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INTRODUCTION

One crucial aspect of human language learning is the learner’s ability to
generalise existing patterns to novel instances. This ability often leads to
various erroneous generalisations in learning. “Overgeneralisation” is one
such type of error, characterised by the learner’s use of a linguistic pattern
that is broader in scope than the corresponding adult uses (Bowerman, 1982;
Brown, 1973; Clark, 1987; Pinker, 1989). Perhaps the best-known example of
overgeneralisation is the acquisition of the English past tense: children gener-
alise -ed to irregular verbs, producing errors like falled, breaked, and comed
(Brown, 1973; Kuczaj, 1977). But just what leads to children’s overgeneralisa-
tions has been under intensive debate. Using the acquisition of the English
past tense as an example, researchers have debated whether language acqui-
sition should be characterised as a symbolic, rule-based learning process
or as a connectionist, statistical learning process. Symbolic theorists assume
that overgeneralisation errors result from the child’s internalisation
and application of linguistic rules (Ling & Marinov, 1993; Marcus, Pinker,
Ullman, Hollander, Rosen & Xu, 1992; Pinker, 1991, 1999; Pinker &
Prince, 1988), whereas connectionists argue that overgeneralisations reflect
the child’s ability to extract statistical regularities from the input (Mac-
Whinney & Leinbach, 1991; Plunkett & Marchman, 1991, 1993; Rumelhart &
McClelland, 1986; Seidenberg, 1997).

In contrast to the well-known overgeneralisation patterns, learners
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sometimes also exhibit “undergeneralisation”—generalisations that are nar-
rower in scope than the corresponding adult usage. A typical example of
undergeneralisation is one in which young children initially restrict tense-
aspect morphology to specific semantic categories of verbs. For example,
early on, English-speaking children use the progressive marker -ing only
with atelic verbs that indicate durative processes (e.g. walk, swim, and
play), whereas they use the past-perfective marker -ed only with telic verbs
that indicate actions with clear endpoints or end result (e.g. spill, break,
and fall). Capitalising on these patterns in early child language, some
investigators hypothesise that children have innate semantic categories that
bias them towards certain grammatical distinetions as expressed by con-
trasting morphological markers (Bickerton, 1981, 1984). Other researchers
disagree with such hypotheses, arguing that the undergeneralisation pat-
terns reflect learners® statistical analyses of the distributional properties of
verbs and morphology in the input language (see Li & Shirai, 2000, for a
summary).

In this chapter, I present a self-organising neural network that attempts to
model both overgeneralisations and undergeneralisations in language acqui-
sition, without making strong assumptions about the innateness of semantic
categories or the symbolic nature of categorical representation, In particular,
I will examine: (1) the acquisition of the English reversive prefixes that has
been discussed by Whorf (1956) and Bowerman (1982) in the context of
morphological overgeneralisation; and (2) the acquisition of grammatical
suffixes that has been discussed by Brown (1973), Bloom, Lifter, and Hafitz
(1980), and, Li and Shirai (2000), in the context of morphological undergen-
eralisation. I take the following observations as a starting point for the
current study:

* Most previous connectionist models of language acquisition have been
concerned with the phonological properties that govern the use of verb
forms, for example, in the acquisition of the English past tense (see
Klahr & MacWhinney, 2000, for an overview). Few studies have paid
attention to the meaning structure of words, perhaps because of the
level of difficulty in representing meaning faithfully in connectionist
networks (but see Burgess & Lund, 1997, and Li, Burgess, & Lund,
2000). Reversive prefixes and aspect suffixes in English provide ideal
cases where the use of grammatical morphology is governed primarily
by semantic rather than phonological properties of lexical items. Our
model addresses the relationship between the acquisition of lexical
semantics and the learner’s ability to generalise morphological devices,

* Most previous models have used artificially generated input representa-
tions that are in many cases isolated from realistic language uses. In
addition, these input patterns are in most cases “handcrafted” ad hoc by
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the modeller. Representations of linguistic information constructed in
this way are often subject to the criticism that the network works pre-
cisely because of the use of certain features in the representation
(Lachter & Bever, 1988). To overcome potential problems associated
with such approaches to linguistic representations, we attempt to use
phonological and semantic representations that more closely approxi-
mate the reality of language use. Moreover, we rely on corpus-based
linguistic data to establish the sequence as well as the structure of the
input data.

+ Most previous models have used supervised learning, in particular, the
back-propagation learning algorithm as their basis of network training.
Although significant progress has been made with these types of net-
works, there are serious problems concerning the biological and psycho-
logical plausibility of such networks. In particular, “back-propagation
networks” are known to suffer from catastrophic forgetting (inability to
remember old information with new learning), scalability (inability to
handle realistic, large-scale problems), and above all, an error-driven
learning process that adjusts weights according to the error signals from
the discrepancy between desired and actual outputs. In the context of
language acquisition, these problems become more transparent. In par-
ticular, it would be a very strong argument that the feedback process
used in back-propagation resembles realistic processes of child language
learning. Such considerations lead us to self-organising neural networks,
in particular, the self-organising feature maps, in which learning pro-
ceeds in an “unsupervised” fashion, without explicit teaching signals as
in back-propagation nets.

This chapter is organised as follows. First, I briefly discuss the two linguistic
problems—the use of reversive prefixes in connection with covert semantic
categories and the use of grammatical suffixes in connection with aspectual
semantic categories. I then describe the acquisition of the reversive prefixes
and aspectual suffixes and the corresponding overgeneralisation and under-
generalisation patterns. Next, I present a self-organising neural network
model that captures the processes underlying overgeneralisation and under-
generalisation. Finally, I conclude with general remarks on the significance
of self-organising neural networks in unravelling the computational and
psycholinguistic mechanisms of language acquisition.
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THE INTERACTION BETWEEN VERB SEMANTICS
AND MORPHOLOGY

Prefixes, suffixes, and verbs

Language is an interactive system. In contrast to early conceptions about
systems of language (Chomsky, 1957), linguists and cognitive scientists now
accept that linguistic components interact across levels: between syntax and
semantics, between syntax and phonology, and between semantics and
morphology, and so on. In this chapter, I focus on the interaction between
semantics and morphology, one that can be best illustrated with examples
from the use of the English reversive prefixes such as un- and dis- and the use
of aspectual suffixes like -ed and -ing. The centrepiece of grammatical
morphology in a sentence is the verb, and thus the study of verbs along with
prefixes and suffixes is the main focus of our present research.

In one of the classic papers of early cognitive linguistics, Whorf (1956)
presented the following puzzle on prefixation. In English, the reversive prefix
un- can be used productively with many verbs to indicate the reversal of an
action, for example, as in undress, unfasten, unlock, or untie. Similar reversal
meanings can also be expressed by other prefixes such as dis- or de-. However,
English prevents the use of un-, dis-, or de- in many seemingly parallel forms,
such as the ill-formed *undry, *unkick, or *unmove. Why? Whorf proposed
that there is an underlying semantic category that governs the use of un-: a
“cryptotype” or covert semantic category. According to Whorf, cryptotypes
only make their presence known by the restrictions that they place on the
possible combinations of overt forms. When the overt prefix un- is combined
with the overt verb tie, there is a covert cryptotype that licenses the combin-
ation untie. This same cryptotype also prohibits combinations such as *un-
kick. To Whorf, the deep puzzle is that while the use of the prefix un- is a
productive morphological device, the cryptotype that governs its productivity
is elusive: “we have no single word in the language which can give us a proper
clue to its meaning or into which we can compress this meaning; hence the
meaning is subtle, intangible, as is typical of cryptotypic meanings.”

Whorf did propose the “covering, enclosing, and surface-attaching mean-
ing” as a core meaning for the cryptotype of un-. However, it is not clear
whether we should view this cryptotype as a single unit, three separate mean-
ings, or a cluster of related meanings. Nor is it clear whether these notions of
attachment and covering fully exhaust the subcomponents of the cryptotype;
for example, Marchand (1969) and Clark, Carpenter, & Deutsch (1995) argue
that verbs that license un- all involve a change of state, usually expressing a
transitive action that leads to some end state or result, as encoded by telic
verbs. When the meaning of a verb does not involve a change of state or
telicity, the verb cannot take um-, thus the ill-formedness of verbs like
*unswim, *unplay, and *unsnore.
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An alternative prefix, dis-, shows many similar properties with wun-,
although Whorf did not discuss this prefix in the context of cryptotype. For
example, the base verbs in disassemble, disconnect, disengage, disentangle, and
dismantle all fit Whorf’s cryptotypic meanings of binding, covering, and
attaching. As a result, many dis- and un- verbs are competitors, for example,
disconnect versus unlink, or disengage versus uncouple. These two suffixes,
however, do not overlap completely: dis- is used for many abstract mental
verbs to which ur- does not apply (e.g. disassociate, disengage, and dis-
entangle) and, overall, un- is much more productive than is dis- in modern
English.

An equally interesting domain as the above where semantics meets
morphology is the use of inflectional suffixes that mark aspectual contrasts,
for example, between perfective and imperfective. According to Comrie
(1976), imperfective aspect presents a situation with an internal point of view,
often as ongoing (progressive) or enduring (continuous), whereas perfective
aspect presents a situation with an external perspective, often as completed.
In English, the imperfective~perfective contrast is realised in the difference
between the progressive -ing and the past-perfective -ed.' Thus, -ing marks the
progressive aspect-—an ongoing event (e.g. “John is walking”), -ed marks the
perfective aspect—a completed event (e.g. “John has walked for an hour”),
and -s marks the habitual aspect—a routinely performed action or an endur-
ing state (e.g. “John walks for an hour everyday™). In contrast to the gram-
matical aspect expressed by suffixes, linguists also recognise the importance
of “lexical aspect” or “inherent aspect”: the temporal properties of a verb’s
meaning, for example, whether the verb encodes an inherent endpoint or end
result of a situation. There are various linguistic descriptions of lexical
aspect, but we adopt here a three-way classification (Mourelatos, 1981; Parsons,
1990): (1) processes—verbs that encode situations with no inherent endpoint
(e.g. walk); (2) events—verbs that encode situations with inherent endpoint
or end result (e.g. break); and (3) states—verbs that encode situations as
homogeneous involving no dynamic or successive phases (e.g. know).

The complex relationship between grammatical aspect and lexical aspect is
another clear case where morphology interacts with semantics. Like the der-
ivational prefixes urn- and dis-, uses of the inflectional suffixes -ed, -ing and -s
are also in many cases constrained. For example, in English, -ing rarely occurs
with state verbs; thus, while “John knows the story” is good, “John is know-
ing the story” sounds odd (Smith, 1983). There are also combinatorial con-
straints between -ing and event verbs; for example, “John is noticing a friend”
is distinctly odd. These kinds of constraints are sometimes referred to as

"Note that -ed marks both past tense and perfective aspect in English, just as -s marks
both present tense and habitual aspect. In other languages, separate affixes are often used for
expressing tense and aspect.
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“naturalness of combination” (Comrie, 1976) between verbs and morpho-
logy, which may ultimately reflect the intricate relationships between lan-
guage use and event characteristics. For example, many events with an end
result last for such a brief period of time that any comment on them is likely
to occur only after the event has ended, for example, situations denoted by
verbs like drop, fall, and crash (cf. Brown, 1973). Thus, it is rare for speakers
to describe the “ongoing-ness” of such events with -ing but more natural to
describe them using past-perfective forms. In some languages the less natural
combinations may be prohibited altogether from the grammar (see Li &
Shirai, 2000). ‘

The prediction that we can derive from these kinds of constraints is that
natural speech will exhibit strong associations between given types of verbs
and given types of morphology (for example, the perfective-to-event associ-
ations). A further, perhaps more important, prediction is that children are
able to explore the statistical relationships that exist between verb semantics
and morphology in language acquisition. I will return to these predictions
when considering empirical and modelling studies of acquisition.

The acquisition of lexicon and morphology

The above discussion demonstrates the close interactions between verb
semantics and grammatical morphology in adult language. How do children
acquire such interactions?

Bowerman (1982) was among the first to point out the important role of
lexical semantics in children’s morphological acquisition. In particular, she
argued that the onset of lexical or morphological errors signals a change or
reorganisation in the child’s mental lexicon: Words that are not initially
recognised as related are later on grouped together. Thus, we should pay
attention not only to the acquisition of morphology per se, but also to the
developing semantic structure in the child’s lexicon. Bowerman illustrated the
point with the acquisition of un-. Her data suggest that children follow a
U-shaped learning curve in learning un-, a pattern also found in other areas
of morphological acquisition (e.g. the acquisition of the English past tense).
At the initial stage, children produce un- verbs in appropriate contexts, treat-
ing un- and its base verb as an unanalysed whole. This initial stage of rote
control is analogous to the child’s saying went without realising that it is the
past tense of go. At the second stage (from about age 3), children produce
overgeneralisation errors like *unarrange, *unbreak, *unblow, *unbury,
*unget, *unhang, *unhate, *unopen, *unpress, *unspill, *unsqueeze, and
*untake (Bowerman, 1982, 1983; see also Clark et al., 1995 for similar errors
in naturalistic and experimental settings). At the final stage of this U-shaped
learning, children recover from these errors and overgeneralisations cease.

Bowerman (1982, 1983) proposed that Whorf’s notion of cryptotype
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might play an important role in children’s acquisition of un-. Cryptotype
might influence acquisition at either the second stage or the final stage of the
U-shape: (1) “generalisation via cryptotype”—recognition of the cryptotype
leads to overly general uses (overgeneralisations); e.g. tighten fits the crypto-
type just as tie does, so the child says *untighten; or (2) “recovery via cryp-
totype”—children use the cryptotype to recover from overgeneralisation
errors; e.g. hate does not fit the cryptotype meaning, and given that only
verbs in the cryptotype can take un- the child stops saying *unhate. Both of
these possibilities have some empirical evidence in Bowerman’s data. How-
ever, there is an important question unanswered: How could the child extract
the cryptotype and use it as a basis for morphological generalisation or
recovery, if the cryptotype is intangible even to linguists like Whorf? (See
Whorf’s comment on the elusiveness of cryptotype, p. 118.)

In an earlier connectionist model (Li, 1993; Li & MacWhinney, 1996)
we hypothesised that cryptotypes seemed intangible because of the limita-
tions of traditional symbolic methods for analysing complex semantic
structures. The meanings of a cryptotype constitute a complex semantic
network, in which words in a cryptotype can vary in: (1) how many seman-
tic features are relevant to each word; (2) how strongly each feature is
activated in the representation of the word; and (3) how features overlap
with each other across members in the cryptotype. For example, the verb
screw in unscrew may be viewed as having both the “circular movement”
and the “locking” meaning; circular movement is an essential part of the
meaning for screw, but less so for wrap. These complex structural relation-
ships in lexical semantics make a rule-based analysis less effective, if not
impossible, but lend themselves naturally to distributed representations and
nonlinear processes in neural networks. In this chapter, I further argue that
a self-organising neural network can derive cryptotype representations by
identifying the complex nonlinear structure from high-dimensional space
of language use.

Turning to the acquisition of suffixes, the major empirical findings are that
young children show strong patterns of association between verb semantics
and morphology in the acquisition of aspect, that is, undergeneralisations in
which children restrict morphology to specific categories of verbs. In particu-
lar, English-speaking children tend to use the progressive marker -ing with
process verbs only, whereas they associate the past-perfective marker -ed with
event verbs. These associations are very strong initially, but weaken over time.
Cross-linguistic data suggest similar patterns in children’s acquisition of
other languages (Li & Shirai, 2000). These patterns prompted some
researchers to argue for the existence of innate or prelinguistic categories. In
particular, Bickerton (1984) argued strongly that the patterns reflect the func-
tioning of a language bioprogram, in which certain semantic distinctions, for
example, distinctions between state and process and between punctual and
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nonpunctual categories, are hardwired, and that the learner simply needs to
find out how they are instantiated in the target language. For example, Brown
(1973) observed that English-speaking children do not use the progressive
-ing with state verbs. To Bickerton, this is strong evidence for the state-process
distinction: Children’s early use of morphology is to mark bioprogrammed
semantic distinctions, not grammatical distinctions.?

Thus, the key developmental issue here is whether the empirical patterns
reflect innate biases originating from predetermined semantic categories. In
this chapter, I present an alternative proposal that rejects the strong version
of the nativist argaument on innate semantic categories. Earlier discussions
(p. 120) have predicted that, in parental input, there are strong associations
between verb semantics (lexical aspect) and morphological categories
(grammatical suffixes). A further prediction is that children are able to
explore the statistical relationships between verbs and morphology in lan-
guage acquisition. Li and Bowerman (1998) propose that the initial verb—
suffix associations could arise as a result of the learner’s analyses of the
semantics—-morphology co-occurrence probabilities in the linguistic input. In
the following, I present a connectionist model that implements this proposal.
The goal is to demonstrate that a neural network model that draws on real-
istic linguistic corpus can capture complex semantic structures that are often
difficult for symbolic analyses. Through modelling, we can identify more
clearly how semantic representations emerge as a function of learning rather
than innate hardwiring.

SELF-ORGANISING NEURAL NETWORK AND
LANGUAGE ACQUISITION

Modelling semantics in connectionist networks

As mentioned earlier, most previous connectionist models have explored only
the formal characteristics, particularly the phonological properties of words.
It is relatively straightforward to represent such formal properties, for
example, by using acoustic or articulatory features of phonemes (Li &
MacWhinney, 2002; MacWhinney & Leinbach, 1991; Miikkulainen, 1997).

A somewhat different, but related view is advocated by Slobin (1985). He suggested the
examination of the morphology-semantics mapping by identifying what are “basic” to the
learner——constructs that are “prelinguistic” or “privileged” in the initial stages of language
acquisition, Slobin’s basic child grammar contains a prestructured “semantic space” with uni-
versal semantic notions or categories, such as process and result for the acquisition of tense and
aspect. However, because the issue of innateness is less fundamental to the basic child grammar
than to the language bioprogram hypothesis, we do not consider it as a nativist theory in this
debate. See Li and Shirai (2000) for an analysis of Slobin’s perspectives in the context of the
nativist—functionalist debate in language acquisition.

R
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It is much more difficult to represent the meaning of words, and thus
the modelling of lexical semantics represents a challenge to connectionist
language research. :

In previous connectionist models involving semantics, researchers have
generally constructed semantic representations for a specific set of words on
the basis of their own linguistic analyses (Li, 1993; Li & MacWhinney, 1996;
MacWhinney, 1998; Ritter & Kohonen, 1989). Alternatively, they use a local-
ist coding to approximate semantics (Cottrell & Plunkett, 1994; Joanisse &
Seidenberg, 1999). For example, in our model of the acquisition of prefix, we
constructed 20 semantic features for the un- verbs, including the general char-
acteristics of actions, relationships between objects, and joint properties of
objects that were designed to capture the semantic range of the verbs that can
be prefixed with or without un- (Li, 1993; Li & MacWhinney, 1996). We
presented these features to native speakers of English, and asked them to rate
the extent to which a given feature applies to a given verb. A feature-by-verb
matrix was derived for each rater, and the mean ratings for each verb became
our semantic vectors.

In our modelling, these feature vectors were submitted as input to a feed-
forward network with back-propagation learning, and the network’s task was
to predict which verb could take un-, its competitor dis-, or no prefix. Two
major results were found in our simulations. First, our network formed
internal representations of semantic categories that captured Whorf’s seman-
tic cryptotypes, on the basis of learning the 20 semantic features. The crypto-
type emerged as a function of the network’s identification of the relationship
that holds between un- and the multiple weighted features shared by the un-
verbs. Our results suggest that in learning of the use of un-, the child, like our
network, may be computing the combinatorial constraints on the co-
occurrences between the prefix, the verb forms, and the semantic features of
verbs. Such a process allowed the system to extract a meaningful representa-
tion of the un- verbs. Second, our network produced overgeneralisation
errors similar to those reported in empirical research, for example, *unpress,
*unfill, and *unsqueeze. More interestingly, these overgeneralisations were
all based on the cryptotype representations that the network developed,
indicating clearly that semantic representations served to trigger morpho-
logical generalisation. They provided support for Bowerman’s (1982)
“generalisation-via-cryptotype” hypothesis, but showed no evidence for the
“recovery-via-cryptotype” hypothesis.

Although results from these initial simulations are encouraging, the way
that semantic features were derived in our model, as in many connectionist
models, is subject to the criticism that the network worked precisely because
of the use of the “right” features (cf. Lachter & Bever, 1988). It can be
argued, for example, that in coding the features the modeller preprocesses the
meaning, and what the network receives is very different from what the
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learner is exposed to in a realistic learning situation. Consideration of this
problem led us to look for semantic representations whose actual features are
blind to the modeller. High-dimensional space models figure prominently in
our search, especially the hyperspace analogue to language (HAL) model of
Burgess and Lund (1997, 1999). Li (1999) used HAL semantic representa-
tions based on lexical co-occurrence analyses. In HAL, the meaning and
function of a given word are determined by lexical co-occurrence constraints
in large-scale speech corpora. HAL focuses on global rather than local lexical
co-occurrences: A word is anchored with reference not only to other words
immediately preceding or following it, but also to words that are further away
from it in a variable co-occurrence window, with each slot in the window
(occurrence of a word) acting as a constraint to define the meaning of the
target word. Global lexical co-occurrence is a measure of a word’s total
contextual history—what words occur before and after a given word, and
how frequently. In this perspective, the semantics of a word can be
represented as a vector that encodes the global lexical constraints in a
high-dimensional space of language use. Figure 4.1 presents a schematic
representation of such vectors: each of the 25-dimension vectors represents
the semantics of a word, with each unit representing the degree of a given
lexical co-occurrence constraint.

To verify if HAL can be used successfully to capture the acquisition of
word meaning, Li, Burgess, and Lund (2000) analysed 3.8 million word
tokens from parental speech in the CHILDES English database (MacWhin-
ney, 2000). We found that the HAL method can derive accurate lexical
semantic representations, given a reasonable size of speech such as our
CHILDES parental speech (rather than a huge amount of speech such as the
Usenet data for the original HAL model). The implication of our study is
that young children can acquire word meanings if they exploit the consider-
able amount of contextual information in the linguistic input by computing
multiple lexical co-occurrence constraints. The limitation of the study is that
no learning was involved in the representation of word meanings, as it was
based purely on extraction of statistical information. I will return to this

Break
Come
Fill
Press
Squeeze

Figure 4.1. A grey-scale representation of HAL vectors for five words. Each dimension of the
25-unit vector represents the degree of a given lexical co-occurrence constraint. A high degree of
constraint is represented as white or grey, and a low degree of constraint as dark or black (on a
continuous scale from 0 = all black, to 1 = all white).
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point in the Conclusions section, where I suggest a developmental learning
model of the HAL type.

Self-organising feature maps and language
representation

Like most previous connectionist models of language acquisition, the model
of Li (1993) and Li and MacWhinney (1996) was based on the standard
back-propagation learning algorithm. Although significant progress has
been made with models based on back-propagation, there are some known
limitations associated with these models (see the Introduction section). Some
of these problems become most transparent when considered in the context
of language acquisition. For example, a strong assumption has been made
that the language learner can be considered as a “hypothesis generator”: each
time the learner hears some linguistic information, he or she will compare it
with existing knowledge and make a guess as to what should be correct in the
target language (Plunkett & Juola, 1999). However, there is so far no psycho-
logical evidence that the language learner is a hypothesis generator of this
nature (i.e. as a back-propagation machine). Children do not receive constant
feedback about what is incorrect in their speech, or the kind of error correc-
tions on a word-by-word basis as provided to the network (consider the “no
negative evidence problem” in language acquisition; see Baker, 1979; Bower-
man, 1988). The gradient descent mechanism used in back-propagation also
leads to other problems, for example, local minima, the problem that the
network is entrapped into a local landscape and unable to move to the global
error minimum (Hertz, Krogh, & Palmer, 1991).

Consideration of these problems led us to look for models that bear more
biological and psychological plausibility. We turned to a class of self-
organising neural networks, the self-organising feature maps (SOFMs).
SOFMs belong to the class of “unsupervised” neural networks, because
learning in these networks does not require the presence of a supervisor or an
explicit teacher; learning is achieved by the system’s self-organisation in
response to the input. During learning, the self-organising process extracts an
efficient and compressed internal representation from the high-dimensional
input space and projects this new representation onto a two-dimensional
space (Kohonen, 1982, 1989, 1995). Several important properties of SOFMs
and related features make them particularly well suited to the study of
language acquisition. We briefly discuss three of them here and their
implications for language acquisition,

(1) Self-organisation. Self-organisation in these networks typically
occurs in a two-dimensional topological map, where each unit (or “neuron”)
is a location on the map that can uniquely represent one or several input:
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patterns. At the beginning of learning, an input pattern randomly activates
one of the many units on the map, according to how similar by chance the
input pattern is to the weight vectors of the units. Once a unit becomes active
in response to a given input, the weight vectors of that unit and its neighbour-
ing units are adjusted so that they become more similar to the input and will
therefore respond to the same or similar inputs more strongly the next time.
In this way, every time an input is presented, an area of units will become
activated on the map (the so-called activity “bubbles”), and the maximally
active units are taken to represent the input. Initially activation occurs in
large areas of the map, but gradually learning becomes focused so that only
the maximally responding unit or units are active. This process continues
until all the inputs have found some maximally responding units.

(2) Representation. As a result of this self-organising process, the stat-
istical structures implicit in the high-dimensional input space are represented
as topological structures on the two-dimensional space. In this new represen-
tation, similar inputs will end up activating the same units in nearby regions,
yielding meaningful activity bubbles that can be visualised on the map. The
self-organising process and its representation have clear implications for lan-
guage acquisition: The formation of activity bubbles may capture critical
processes for the emergence of semantic categories in children’s acquisition
of the lexicon. In particular, the network organises information first in large
areas of the map and gradually zeros in onto smaller areas; this zeroing-in is a
process from diffuse to focused patterns, as a function of the network’s con-
tinuous adaptation to the input structure. This process allows us to model the
emergence of semantic categories as a gradual process of lexical develop-
ment. It naturally explains many generalisation errors reported in the child
language literature: for example, substitutions errors (e.g. put for give, fall for
drop; Bowerman, 1978) often reflect the child’s initial recognition of diffuse
similarities but not fine-grained distinctions between the words. It also
explains language disorders that result from the breakdown of focused acti-
vation or the inability to form focused representations (Miikkulainen, 1997;
Spitzer, 1999).

(3) Hebbian learning. Hebbian learning is not an intrinsic feature of a
SOFM, but several SOFMs can be connected via Hebbian learning, such as
in the multiple feature-map model of Miikkulainen (1993, 1997). Hebbian
learning is a well-established biologically plausible learning principle, accord-
ing to which the associative strength between two neurons is increased if the
neurons are both active at the same time (Hebb, 1949). The amount of
increase may be proportional to the level of activation of the two neurons. In
a multiple SOFM model, all units on one map are initially connected to all
units on the other map. As self-organisation takes place, the associations
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become more focused, such that in the end only the maximally active units on
the corresponding maps are associated. Hebbian learning combined with
SOFMs has strong implications for language acquisition: It can account for
the process of how the learner establishes relationships between word forms,
lexical semantics, and grammatical morphology, on the basis of how often
they co-occur and how strongly they are co-activated in the representation.

Thus, models based on the above properties: (1) allow us to track the
development of the lexicon clearly as an emergent property in the network’s
self-organisation (from diffuse to focused patterns or from incomplete to
complete associative links); (2) allow us to model one-to-many or many-to-
many associations between forms and meanings in the development of the
lexicon and morphology; and (3) provide us with a set of biologically plaus-
ible and computationally relevant principles to study language acquisition
without relying on negative evidence to learn. They are biologically plausible
because the human cerebral cortex can be considered as essentially a
self-organising map (or multiple maps) that compresses information on a
two-dimensional space (Kohonen, 1989; Spitzer, 1999), and computationally
relevant because language acquisition in the natural setting (especially organ-
isation and reorganisation of the lexicon) is largely a self-organising process
that proceeds without explicit teaching (MacWhinney, 1998, 2001).

A number of studies have employed SOFMs for language research. An
earlier attempt was made by Ritter and Kohonen (1989), who constructed a
network that takes semantic features of animals (e.g. small-size, has hair, can
fly) and organises them on a feature map. In the input, each animal was
represented as a combination of these features in a feature vector and, after
2000 epochs of self-organisation, the network developed meaningful repre-
sentations of types of animals. Wild predators (e.g. tiger, lion, wolf) were
grouped together on one area of the map, whereas birds (e.g. hawk, owl,
goose) were grouped nearby on another area. Within each group, similar
animals were closer to each other than were dissimilar ones. Although Ritter
and Kohonen’s model used only a dozen or so animal words with a highly
idealised feature representation, their results showed that interesting semantic
structures could develop from the network’s self-organisation of relevant
features, and that the new representations in a SOFM can correspond closely
to the hierarchical structure of human conceptual relationships.

Miikkulainen’s (1993) research represents another important step in using
SOFMs for language research. He proposed an integrated model of memory
and natural language processing, in which multiple SOFMs dedicated to dif-
ferent levels of information are connected. A subcomponent of this model is
DISLEX (Miikkulainen, 1997), a SOFM model of the lexicon. In DISLEX,
different maps correspond to different linguistic information (orthography,
phonology, or semantics) and are connected through associative links via
Hebbian learning. During learning, an input pattern activates a unit or a
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group of units on one of the maps, and the resulting bubble of activity
propagates through the associative links and causes an activity bubble to
form in the other map. The activation of co-occurring form-meaning repre-
sentations leads to adaptive formations of the associative connections
between the maps. DISLEX successfully models the mental lexicon in normal
and disordered language processing. Miikkulainen showed that in a lesioned
SOFM, behaviours of dyslexia (e.g. producing dog in reading sheep) can
result from partial damage to the semantic representation. The network also
displayed behaviour of surface dyslexia (e.g. producing ball in reading doll),
which results from partial damage to the form representations.

MacWhinney (2001) further considered the use of SOFMs in the domam
of lexical acquisition. A normal English-speaking child, starting from the
age of 2, learns an average of nine words per day, ending up with an active
vocabulary of about 14,000 words by age 6 (Carey, 1978). Apparently, this
size of lexicon exceeds the capac1ty of most current connectionist models
(the “scalablhty” problem in connectionism). To answer this challenge,
MacWhinney trained two feature maps to associate with each other, one
representing lexical semantics, and the other phonological features. In a sim-
plified scheme, the phonology or semantics of an input was represented by
four units with random values. The two maps were associated through Heb-
bian learning, as in the DISLEX model. It was found that a network with
10,000 nodes was able to learn the form—meaning associations of up to 6000
words, with an average error of less than 1 per cent. MacWhinney suggested
that it would be possible to increase the size of the feature map to learn more
words and that given the enormous number of cells in the human brain, the
size of the feature map is not an important limiting constraint on lexical
acquisition by children.

The above studies all attest to the utility and importance of self-organising
neural networks in language research. However, they suffer from the same
problems we discussed earlier, either because the semantic representations
were too simplified, or because the target lexicon of the model was too small
and unrealistic, or both. In considering these problems, Li (1999, 2000)
explored SOFMs as a feasible model of language acquisition in the context of
lexicon and morphology. In what follows, I will present a sketch of the model
and its implications for language acquisition; for details, see Li (1999, 2000),
and Li and Shirai (2000, Chapter 7).

A SOFM MODEL OF LEXICAL AND
MORPHOLOGICAL ACQUISITION

On the basis of the discussions above, I present two modelling studies: (1) the
acquisition of semantic cryptotypes of verbs in the context of derivational
prefixes; and (2) the acquisition of lexical aspect of verbs in the context of
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inflectional suffixes. In each case, the model simulates the development of the
lexicon and morphology in young children. The goal is to show: (1) how a
SOFM model can capture processes of semantic organisation that lead to
distinct semantic categories, categories that have been claimed to be either
intangible (e.g. cryptotypes) or innate (e.g. state and result); and (2) how
such a model can derive semantic-morphological associations as observed in
child language, on the basis of analysing distributional information in
realistic linguistic data. Evidence from such a model should provide insights
into psycholinguistic mechanisms underlying lexical and morphological
acquisition.

The model consisted of two SOFMs, each of the size of 25 X 25 units, one
for the organisation of lexical form, including the phonology of verb stems
and affixes (the lexical map), and the other for the organisation of semantic’
information (the semantic map). Because the simulation of suffixes involved
twice as many verbs as the simulation of prefixes, the size of the maps for the
suffix model was correspondingly expanded (50 x 50 units). Figure 4.2
illustrates the model diagrammatically.

Method

Input and representation. As we model the acquisition of prefixes and
suffixes, the input data to our network consist mainly of lexical representa-
tions of verbs with which the affixes co-occur. In the case of prefixes, we
selected 228 verbs according to the Webster’s New Collegiate Dictionary and
the Francis and Kucera (1982) corpus. The 228 verbs for prefixes include 49
un- verbs, 19 dis- verbs, and 160 verb stems with no prefixes. In the case of
suffixes, we selected 562 verbs from the CHILDES parental corpus (see Li &
Shirai, 2000) with the following criterion: A verb was included in our training

SOFM1
> Lexical form map

Self-organisation

Hebbian learning T l

) SOFM2

Self-organisation

Figure 4.2. A SOFM model of lexical and morphological acquisition. The model consisted of
two SOFMs: one self-organises on lexical form (the lexical map), and the other self-organises on
word meaning (the semantic map). The associations between the two maps are trained via
Hebbian learning.
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data if it occurred in the parental corpus for five or more times at a given age
period (see the Stages of training section below).

To represent the phonology of the verbs, we used a syllable-based template
coding developed by MacWhinney and Leinbach (1991). This coding scheme
has the advantage over traditional phonemic representations in that it can
more accurately capture phonological similarities of multisyllabic words. A
word’s representation is made up by combinations of syllables in a metrical
grid, and the slots in each grid are made up by bundles of features that
correspond to phonemes, Cs (consonants) and Vs (vowel). For example, the
18-slot template CCCVV CCCVV CCCVV CCC represents a full trisyllabic
structure in which each CCCVV is a syllable (the last CCC represents the
consonant endings). Each C is represented by 10 feature units, and each V
by 8 feature units, making a total of 168 units for each phonological
vector (see Li & MacWhinney, 2002, for a more recent version of this
representation).

The semantic representations of verbs to our network were based on
lexical co-occurrence analyses in the HAL model (Burgess & Lund, 1997).
As discussed earlier, HAL measures the semantics of a word by its total
contextual history, encoded as a vector that represents multiple lexical
co-occurrence constraints from large-scale corpora. Of course, not all lexical
constraints contribute equally to the representation, so we extracted 100
components that have the greatest contextual diversity as the appropriate
vector dimensions (see Lund & Burgess, 1996, for details). Thus, each
semantic representation is formed by a 100-unit vector.

Task and procedure. Upon training of the network, a phonological rep-
resentation of a verb was input to the network and, simultaneously, the
semantic representation of the same verb was also presented to the network.
By way of self-organisation, the network formed an activity on the phono-
logical map in response to the phonological input, and an activity on the
semantic map in response to the semantic input. Depending on whether the
verb is compatible with a given affix in the language (prefix) or in the input
speech (suffix), the phonological representation of the affix was also coacti-
vated with the phonological and the semantic representations of the verb
stem. As the network received input and continued to self-organise, it simul-
taneously learned associations between maps through Hebbian learning: Ini-
tially, all the units on one map were fully connected to all the units on the
other map; as learning continued, only the units that were coactivated in
response to the input were associated. If the direction of the associative
propagation goes from phonology to semantics, comprehension is modelled; if
it goes from semantics to phonology, production is modelled. As the goal of
learning, the network should create new representations in the corresponding
maps for all the inputs and link the semantic properties of a verb to its
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phonological shape and morphological “pattern. All simulations were
conducted with the DISLEX simulator (Miikkulainen, 1999).

Stages of training. To observe effects of the interaction between lexicon
and morphology in learning, we designed four stages to train the network. In
the case of prefixes, a given verb is paired with un-, dis-, or zero-marking
according to whether the prefixation is allowed in the adult language. In
the case of suffixes, a given verb is paired with -ing, -ed, -s, or zero-marking
according to whether the verb co-occurs with the suffix in the parental
speech.

For prefixes, the four stages were: (1) the phonological representation of a
verb stem was coactivated with its semantic representation on a one-to-one
basis in the input. This was done to model the whole-word learning stage—a
stage at which children have not analysed morphological devices as separate
entities from the verb stems (Bowerman, 1982); (2) phonological and seman-
tic representations of verb stems (e.g. tie, connect), prefixed verbs (untie, dis-
connect), and the prefixes themselves (un-, dis-) were all coactivated in the
input; (3) 25 novel verbs were introduced to the network to test whether
generalisations would occur in our network as in children’s speech. These
were verbs on which previous studies have reported children’s generalisations
(Bowerman, 1982; Clark et al., 1995). Generalisation was tested by inputting
the verbs to the network without having the network self-organise or learn
the phonological-semantic associations; (4) self-organisation and Hebbian
learning resumed for the novel verbs introduced at stage 3 to test if the
network could recover from generalisations.

For suffixes, the four stages were based on the age groups of the input data
(i.e. the age of the child for which adult input was available in our corpus—
the input age). The four stages were: (1) input age 1;6 (13-18 months). Rela-
tively few uses of suffixes occur in the CHILDES parental data before the
child is 13 months old. For the period of 13-18 months, a total of 186 verbs
fit our selection criteria (i.e. occurred five or more times); (2) input age 2;0
(19-24 months) included 324 verbs; (3) input age 2;6 (25-30 months) included
419 verbs; and (4) input age 3 (31-36 months) included 562 verbs. These
stages reflect an incremental growth of vocabulary, and the verbs at a later
stage always included verbs at the previous stage. It also reflected a coarse
frequency coding: a verb or a suffix was presented to the network for the
number of times it occurred across the four stages.

In the following sections, I report two sets of simulation results, one for
prefixes, and the other for suffixes. However, the acquisition patterns are
comparable for both types of morphology, to which we will return in the
Conclusions section.
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Results and discussion: Prefix simulations

In this section, I focus on three levels of analysis on the prefix simulations: the
network’s representation of the cryptotype, its patterns of overgeneralisation,
and its ability to recover from the generalisation errors.

Representation of cryptotype. One of the major motivations for this
study was whether neural networks can develop structured representation as
a function of its self-organisation on verb semantics. In particular, I wanted
to see how the patterns of activity formed in the semantic map can capture
Whotf’s covert, “intangible”, category of cryptotype.

In Li and MacWhinney (1996) we suggested that there are several “mini-
cryptotypes” that work collaboratively as interactive “gangs” (McClelland &
Rumelhart, 1981) to support the formation of a larger cryptotype. For
example, “enclosing” verbs, such as coil, curl, fold, ravel, roll, screw, twist, and
wind, all seem to.share a meaning of circular movement; another set of verbs
such as cover, dress, mask, pack, veil, and wrap form the “covering” mini-
cryptotype, and so on. Members in these mini-cryptotypes are closely related
by overlapping semantic features. Previously, we have used hierarchical clus-
ter analyses to identify the existence of mini-cryptotypes in our network, by
analysing the hidden-unit activation patterns. In the current study, these
mini-cryptotypes can be seen more clearly in the emerging structure of the
SOFM’s two-dimensional layout as activity bubbles. In our network, the self-
organisation process extracted semantic structures from the input and pro-
jected the new representations on the semantic map. Figure 4.3 presents a
snapshot of the network’s representation after it was trained on 120 verbs for
600 epochs at stage 1.

A close examination of the semantic map shows that the network
developed clear representations that correspond to the cryptotype which
Whorf believed governs the use of un-. Our network, without using ad hoc
semantic features, mapped members in mini-cryptotypes onto nearby regions
of the SOFM. For example, towards the lower right-hand corner, verbs like
lock, clasp, latch, lease, and button were mapped to the same region, and these
verbs all share the “binding/locking” meaning. Similarly, “attachment” verbs
like snap, mantle, tangle, ravel, tie, and bolt occurred towards the lower left-
hand corner, and verbs of perceptions and audition like hear, say, speak, see,
and tell can be found in the upper left-hand corner, One can also observe that
embark, engage, integrate, assemble, and unite are being mapped towards the
upper right-hand corner of the map, which all seem to share the “connecting”
or “putting-together” meaning and, interestingly, these are the verbs that can
take the prefix dis-. Of course, the network’s representation at this point is
still incomplete; as self-organisation is moving from diffuse to more focused
patterns of activity; for example, the verb show, which shares similarity with
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Figure 4.3, The representation of semantic cryptotypes in a SOFM. The upper panel is the
lexical map, and the lower panel the semantic map. The phonological representations of words
are in capitals, and the semantic representations in lower case. Words longer than four letters are
truncated.

none of the above, is grouped with the binding/locking verbs. What is crucial,
however, is that these clusters form the semantic basis for the overall
cryptotype of the un- verbs. As shown in Figure 4.3, the network has mapped
most verbs in the cryptotype to the bottom layer of the semantic map, and
importantly, these are the verbs that can take the prefix un-.

These results from our model offer a tangible solution to the “intangible”
aspects of Whorf’s cryptotype. Connectionist learning provides us with a
natural way of capturing Whorf’s insights of cryptotype as well as its acquisi-
tion in a formal mechanism. It gives a precise account of how the un- crypto-
type emerges from learning in a distributed representation: The formation of
a cryptotype is supported by mini-cryptotypes that interact collaboratively,
which are in turn supported by multiple weighted features shared by all the
un- verbs through summed activation.
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Representation and overgeneralisation. Connectionist networks can gen-
eralise learned patterns to novel instances, but do they show the same types of
generalisation as children do? And on what basis do they generalise?

In our network, as discussed earlier, the two SOFMs can be connected via
Hebbian learning: the phonological and semantic representations of a verb
are coactivated in different maps, along with the corresponding prefixes that
the verb can take in the language. Hebbian learning determines how strong
the connections between the phonology, the meaning, and the affix should be
during each stage of the learning. At the same time, the two maps also self-
organise. In this way, Hebbian learning and self-organisation provide the
network with focused pathways from form to meaning and from meaning to
form. Thus, when the network receives ‘a new input, it can readily “compre-
hend” the input (from form to meaning) or “produce” the input (from mean-
ing to form) using its existing, learned pathways between the feature maps.
This procedure also allows us to test the network’s generalisation ability when
meaningful representations have emerged from the maps.

The simulation results indicate that our network was not only able to
capture the elusive cryptotype by way of self-organisation, but also able to
generalise on the basis of this representation. For example, when tested for
generalisation at stage 3, the network produced overgeneralisation errors
(e.g. *unbreak, *uncapture, *unconnect, *ungrip, *unpeel, *unplant, *unpress,
*unspill, *untighten) that match up with empirical data. These overgeneralisa-
tions were based both on the network’s established structure of semantic
representations and on the associative connections that it formed in learning
the meaning-form mappings. Several observations can be made on the net-
work’s overgeneralisations.

First, most of these overgenerahsatlons involve verbs that fall within the
Whorfian cryptotype (e.g. connect, grip, peel, plant, press, spill, and tighten).
Earlier, we pointed out two hypotheses regarding the role of the cryptotype
in children’s acquisition of un- according to Bowerman: “generalisation via
cryptotype” and “recovery via cryptotype”. Our results here are consistent
with the first hypothesis, that is, the representation of cryptotype leads to
overly general uses of um-. Consistent with our previous simulations, we
found no violations of the cryptotype in the network’s overgeneralisations
such as *unhate or *untake (as found in Bowerman’s data); hence there
was no evidence for the hypothesis that the learner can use the cryptotype
representation to recover from overgeneralisations.

Second, the associative pathways between the two maps formed via Heb-
bian learning provide the basis for the production of overgeneralisations. For
example, the semantic properties of tighten and clench are similar and they
were mapped onto nearby regions of the semantic map. During learning, the
semantics of clench and unclench were coactivated, and the phonology of
clench, unclench, and un- were also coactivated. When the semantics and the

;

el B B g o e L



4. LANGUAGE ACQUISITION IN A NEURAL NETWORK MODEL 135

phonology of these items were associated through Hebbian learning, the
network can associate the semantics of tighten with the phonology of un-
because of clench, even though the network learned only the association of
un-clench and not un-tighten (i.e. at an earlier stage tighten was withheld from
the training). This associative process of correlating semantic features, lexical
forms, and morphological devices simulates the process of learning and gen-
eralisation in children’s language acquisition, and shows that overgeneralisa-
tions can arise naturally from structured semantic representations (a result of
self-organisation) and from associative learning of meanings and forms.

Finally, overgeneralisations were not limited to morphological generalisa-
tions. There were lexical generalisations similar to those reported by Bower-
man (1982) and Miikkulainen (1997). For example, the network produced see
in response to say, detach in response to delete, begin in response to become,
due to its representation of these pairs of words in the same region on the
phonological map. These generalisations resemble lexical errors in surface
dyslexia. Similarly, the network comprehended see as speak, arm as clasp, and
unscrew as hook, due to its representation of these pairs of words in nearby
regions in the semantic map, and these errors resemble lexical errors in deep
dyslexia in reading comprehension. They demonstrate further the intimate
relationship between semantic representation and generalisation. Again, self-
organisation and Hebbian learning account for the origin of this type of
generalisation errors.

Mechanisms of recovery from generalisations. Can our self-organising
network recover from generalisations as children do? If so, what computa-
tional mechanisms permit its recovery?

Our network displayed significant ability to recover from overgeneralisa-
tions. When tested for generalisations at stage 3, no learning took place in the
network for self-organisation or associative connection. When tested for
recovery at stage 4, self-organisation and Hebbian learning resumed. Within
200 epochs of new learning during the last stage, the network recovered from
the majority of the overgeneralisations tested at stage 3. Recovery in this case
is a process of restructuring the mapping between phonological, semantic,
and morphological patterns, and this restructuring is based on the network’s
ability to reconfigure the associative pathways through Hebbian learning, in
our case, the ability to form new associations between prefixes and verbs and
the ability to eliminate old associations that were the basis of erroneous
overgeneralisations. When a given phonological unit and a given semantic
unit have fewer chances to become coactivated, Hebbian learning decreases
the strengths of their associative links. For example, un- and tighten were
coactivated because of un- and clench at stage 3; at stage 4 un- and clench
continue to be coactivated, but un- and tighten are not coactivated. Hebbian
learning determines that the associative connection between un- and clench
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continues to increase as learning progresses, but that between un- and tighten
gets decreased and eventually eliminated, thereby simulating what happens at
the final phase of U-shaped learning. This result models the process in which
children’s overgeneralisations are gradually eliminated when there is no audi-
tory support in the input about specific co-occurrences that they expect
(MacWhinney, 2001). In the realistic learning situation, the strength of the
connection between un- and inappropriate verbs may also be reduced by a
competing form such as loosen that functions to express the meaning of
*untighten. This type of process is often discussed in the literature as the
pre-emption mechanism (Clark, 1987) or the competition mechanism
(Bates & MacWhinney, 1987; MacWhinney, 1987). Our model has not yet
incorporated this type of mechanism.

Hebbian learning coupled with self-organisation provides a simple but
powerful computational principle to account for the recovery process.
Restructuring of associative links often goes hand-in-hand with the reorgan-
isation of the maps. For example, at stage 4, the network developed finer
representations for verbs such as clench and tighten: As the associative
strengths of these verbs to un- varied, their representations also became more
distinct. This process in our simulation is consistent with the proposal that
children recover from generalisations by recognising fine and subtle semantic
and phonological properties of verbs (Pinker, 1989). Interestingly, in cases
where it did not recover from overgeneralisations, the network had difficulty
making fine semantic distinctions. For example, because it was unable to
separate word pairs like press and zip in the semantic map, it continued to
produce erroneous forms like *unpress.

An additional parameter that we considered in the SOFM’s error recovery
was the size of the feature map (i.e. the number of units available for learn-
ing). The inability to further distinguish semantically similar words might
be due to resource limitations. To verify this hypothesis, in a separate but
otherwise identical simulation, we doubled the size of both maps (from
25 % 25 units to 50 X 50 units). In this new simulation, at stage 3 we con-
tinued to observe the same type of overgeneralisations as in the original
simulations, but at stage 4 the network recovered completely from all the
overgeneralisations. Thus, there is reason to believe that enough learning
resource is needed for the network to further reorganise confused items that
are due to great similarity. For the child, it is likely that the increasing
capacity of memory and other cognitive abilities make resource limitation a
nonproblem. We could model this type of resource increase with an archi-
tecture in which the number of neurons dynamically grows in response to
the learning task (see Farkas & Li, 2002, for a recent implementation). This
type of dynamic growth of SOFMs could be compared to the cascade
correlation mechanism in back-propagation learning (Fahlman & Lebiere,
1990).
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Results and discussion: Suffix simulations

The simulation procedures for the suffixes were similar to those for the pre-
fixes except the training materials and stages. We also used larger maps
(50 x 50 units) given the resource problem considered above and given that
twice as many verbs were involved in the suffix simulations as in the prefix
simulations. Below, I focus on three levels of analysis for the suffix simula-
tions: the role of input, the emergence of lexical aspect categories, and the
formation and relaxation of strong associations between lexical semantic
categories and grammatical suffixes.

Role of input. One important rationale behind the current modelling
effort is the understanding of the role of linguistic input in guiding children’s
acquisition of lexical and grammatical aspect. The relationship between pat-
terns observed in children’s speech and those in parental speech with respect
to the interaction between verb semantics and aspect suffixes has been
emphasized elsewhere (Li & Bowerman, 1998; Li & Shirai, 2000) but a simple
correlation between children’s and adults’ patterns tells us only that the child
is sensitive to the linguistic environment and is able to incorporate informa-
tion from that environment into his or her own speech. It does not tell us how
the child actually does the analysis, or what mechanisms allow the child to do
the analysis. Thus, we need to test if a connectionist network—endowed with
self-organisation and Hebbian learning principles—is able to display learning

- patterns as found in child language. If so, we can conclude that self-organisa-
tion and Hebbian learning may provide the necessary kinds of mechanisms
that allow for the formation of patterns in language acquisition. In this way,
our modelling enterprise provides insights into the mechanisms underlying
the learning process.

Table 4.1 presents a summary of the major patterns from the network’s
learning according to the tense-aspect suffixes it produced at the different
learning stages. It shows the results of the network’s production of three
suffixes, -ing, -ed, and -s with three types of verbs, processes, events, and
states. The results are based on the unit activations on the phonological map
that each verb in the semantic map activated, after the network had been
trained for 200 epochs at each stage.

The results in this table are highly consistent with empirical patterns
observed in early child language: the use of the progressive aspect (marked by
-ing in English) is closely associated with process verbs that indicate ongoing
processes, while the use of past-perfective aspect (marked by -ed in English) is
closely associated with event verbs that indicate endpoints or end results.
Some studies also suggest a strong association between the habitual -s and
state verbs (Clark, 1996). Our network, having received input patterns based
on parental data, behaved in the same way as children do. For example, at
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TABLE 4.1
Percentage of use of tense-aspect suffixes with different verb types across input age
groups in the network’s production and in the parental input data”

Tense-aspect suffixes

Age 1;6 Age 2;0 Age 2,6 Age 3,0

Verbs -ing -ed -s -ing -ed -s -ing -ed -5 -ing -ed -
Network production .
Processes 75 18 0 66 16 0 64 26 0 52 9 10
Events 25 82 0 28 84 0 31 74 0 4 77 10
States 0 0 100 0 0 100 0O 0 100 4 14 80
Item totals™ 40 11 371 19 9 8 19 7 70 22 10
Parental input data

Processes 69 22 0 74 15 17 67 23 20 67 23 23
Events L 28 77 33 24 77 0 25 69 20 31 65 8
States 3 0 67 2 8 83 8 8§ 60 2 12 69
Item totals 29 3 9 54 13 12 40 13 10 60 26 13

* The table includes only verbs that could be uniquely assigned to one or the other suffixation
pattern and does not include instances for which the network produced a given verb with
multiple suffixes. See Table 4.2 for the latter.

** These are the total number of verbs that occurred with the given suffix. Note that the percent-
ages within a given column do not always add up to 100, reflecting that some verbs could not be
easily classified into one or the other category. This is also true for Table 4.2.

input age 1,6, the network produced -ing predominantly with process verbs
(75 per cent), -ed overwhelmingly with event verbs (82 per cent), and -s
exclusively with state verbs (100 per cent). Such associations remained strong
at input age 2 but gradually became weaker (although still transparent) at
later stages.

Interestingly, when we analysed the actual input to our network (based on
parental speech), we found similar patterns. Table 4.1 also presents the per-
centages of the use of suffixes with different verb types in the input data. The
degree to which the network’s production matches up with the input patterns
(Table 4.1) indicates that our network was able to learn on the basis of the
information of the co-occurrences between lexical aspect (verb types) and
grammatical aspect (use of suffixes). This learning ability was due to the
network’s use of Hebbian associative learning in computing: (1) when the
semantic, phonological, and morphological properties of a verb co-occur;
and (2) how often they do so.

The results in Table 4.1 also match up nicely with several empirical studies
that have examined the correspondence between children’s speech and adult
input in the acquisition of tense—aspect suffixes, in English (Shirai &
Andersen, 1995), Japanese (Shirai, 1998), modern Greek (Stephany, 1981),
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and Turkish (Aksu-Kog, 1998). Note that the patterns in the input, as
discussed by Li and Shirai (2000), are usually less absolute or restrictive
than in children’s early productions, showing that adults are more flexible
in associating various types of grammatical morphology with various types
of verbs. Indeed, the patterns in Table 4.1 show that the associations
between verb types and suffixes are weaker in the input to the network than
they were in the network’s production. This is important, because if the
learner—child and network alike—simply mimicked what is in the input,
the learner would have no productive control over the relevant linguistic
problem and would simply produce the patterns verbatim. The modelling
results further confirm the hypothesis that a probabilistic pattern in the
input can lead to more absolute patterns in the learner’s output, because
the learner initially capitalises on the prototypical representations of the
verb-suffix association (see Li & Shirai, 2000, for the role of input in
inducing prototypes).

Emergence of semantic categories of lexical aspect. Figure 4.4 presents a
snapshot of the network’s self-organisation of the semantic representations
of verbs at input age 1;6 (from the semantic map). The network clearly
developed structured semantic representations that correspond to categories
of lexical aspect such as processes, events, and states. For example, towards
the lower right-hand corner, state verbs like feel, know, think, remember, won-
der, love, and like were mapped onto the same region of the map. Event verbs
can be found in the middle-to-left portion of the map, including verbs like
catch, fix, break, knock, grab, and throw, all of which indicate actions that
lead to clear end results. Process verbs can be found spanning the upper end
of the map, including (from left to right) rub, scrub, sleep, shout, laugh, drink,
walk, kiss, cry, swim, dance, and so on.

The above patterns of semantic neighbourhood bear close similarity with
the formation of mini-cryptotypes in the case of prefixes. As discussed earlier,
the formation of semantic categories goes hand-in-hand with the acquisition
of grammatical morphology. On the one hand, similar verbs form concen-
trated patterns of activity, providing the basis for semantic categories, and on
the other hand, they also form focused associative pathways to the phono-
logical and morphological representations of verbs in the other map. When
concentrated activities occur both horizontally (within a two-dimensional
map) and vertically (across the maps), the semantic categories of lexical
aspect will behave like magnets to connect the lexicon to morphology. Thus,
when a new input has semantic overlap with verbs of an existing lexical
category and resembles members of that category, its mapping to correspond-
ing morphemes will be readily done through the existing associative pathways
going from verb semantics to suffixes; that is, no additional learning will be
needed for the new mapping. This analysis provides a mechanistic account for
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Slobin’s (1985) basic child grammar hypothesis that the initial semantic cat-
egories act as magnets to attract grammatical mappings in the input language.

From strong associations to diverse mappings.. As with the prefix simula-
tions, the associative pathways between forms and meanings are established
via Hebbian learning across learning stages. Depending on how often forms
and meanings co-occur, Hebbian learning establishes either stronger or
weaker associations. Thus, when the network has a focused pathway, for
example, between -s on the lexical map and state verbs on the semantic map,
it can readily “comprehend” new state verbs at no additional learning, pro-
moting an even stronger state-to-s association (a prototypical association).
However, as learning progresses, -s may be used more diversely with other
verb types in the input, so that the prototypical association weakens over
time. The fact that a given suffix occurs with multiple verbs, and a given
verb occurs with multiple suffixes in the input tells the system that it should
no longer be restricted to the prototypical associations, but develop new
nonprototypical mappings between lexicon and morphology.

Table 4.2 presents the same simulation results as in Table 4.1, except that
multiple suffixation patterns are included here—a given verb was counted for
multiple number of times in the table depending on the number of suffixes
with which it co-occurred (Table 4.1 included only verbs that could be
uniquely assigned to one suffixation pattern; see Li & Shirai, 2000, for the
rationale behind this treatment).

A comparison of this table with Table 4.1 reveals that, for the early stages
(1;6 and 2;0), the two tables are very similar; for the later stages, however, they
become more distinct, mainly with respect to the uses of -ed and -s. Detailed
analyses show that over 50 per cent of all suffixed verbs had more than one

TABLE 4.2
Percentage of use of tense-aspect suffixes with different verb types across input age
groups in the network’s production (multiple suffixations)”

Tense-aspect suffixes

Age 1,6 Age 2,0 Age 2,6 Age 3,0
Verbs -ing -ed -5 -ing -ed -s -ing -ed -s -ing -ed -
Processes 72 16 0 62 29 6 64 40 44 52 38 30
Events 28 75 0 32 66 31 32 60 12 43 53 26
States ] 8 100 0 4 63 0 0 44 5 9 44

Item totals” 43 12 5 81 24 16 114 35 16 121 64 27

* Because the same verb could occur in more than one column, the sum of the item totals across
columns does not equal the total word types. This differs from the interpretation of item totals in
Table 4.1.
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suffix at input age 3;0, compared with only 5 per cent at input age 1;6. These
results suggest that multiple suffixations might be the driving force for the
learner to break from the strong associations to more diverse mappings.
There was relatively little change with the -ing verbs, because the majority of
the early verbs were process verbs that take -ing. Overall, these results indicate
that increasing associative links between verbs and suffixes (along with
incremental vocabulary growth) lead to diverse mappings, first with some
words and then spreading to others, thus accounting for how the strong
associations weaken over time in children’s language.

Our simulation results also shed some light on the acquisition of the
English past tense. First, given that children’s early use of -ed is restricted to
specific lexical meanings, overgeneralisations of -ed would not occur across
the board for all types of verbs but will rather be restricted to event verbs
initially. Second, overgeneralisations of -ed not only may be semantically
restricted, but also sometimes semantically motivated. In our network,
semantic pathways formed via Hebbian learning provide the basis for the
production of overgeneralisation errors. For example, knock and break share
semantic similarities and were mapped onto nearby regions in the semantic
map. During learning, the semantics of knock and knocked were coactivated,
and the phonological forms of knock, knocked, and -ed were also coactivated.
When the semantics and the phonology of these items were associated via
Hebbian learning, the network would connect the semantics of break with the
phonology of -ed because of knock, even though it learned only the
association for knock-ed and not break-ed (i.e. when break was withheld from
training initially). This result parallels the overgeneralisation errors on
prefixes such as *un-tighten (due to un-clench) that we discussed earlier.

CONCLUSIONS

In this chapter, I started by reviewing some of the problems in previous
connectionist models of language acquisition. I pointed out that previous
models have been largely restricted to the examination of phonological pat-
terns (in contrast to semantic structures), to the use of artificially generated
input (in contrast to realistic linguistic data), and to the use of supervised
learning algorithms (in contrast to unsupervised learning). I proposed a new
connectionist model of language acquisition that is based on the examination
of the acquisition of semantics, with exposure to realistic child-directed
parental data, and in self-organising networks with unsupervised learning. 1
showed how SOFMs can be used successfully to model the acquisition of
lexicon and morphology. In particular, I applied SOFMs to examine two lin-
guistic domains where the development of lexicon and morphology is crucial:
(1) the acquisition of derivational prefixes with respect to semantic crypto-
types of verbs; and (2) the acquisition of inflectional suffixes with respect to
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grammatical and lexical aspect of verbs. The new model sheds light on issues
of semantic representation, morphological overgeneralisation and undergen-
eralisation, and recovery from erroneous generalisations in humans and
networks. I argue that self-organising neural networks coupled with Hebbian
learning provide computationally relevant and psychologically plausible
principles for modelling language development.

One of our major tasks in modelling the acquisition of semantics is to see
how structured semantic representations could emerge from the network’s
self-organisation of lexical features of verbs. This task is designed to answer
two challenges: (1) how can neural networks capture the formation of covert
semantic categories, categories that have been traditionally thought elusive,
subtle, or even intangible (e.g. the Whorfian cryptotype)? and (2) how can
neural networks capture the emergence of lexical aspect categories, categories’
that have been believed to be innate or otherwise universal (e.g. Bickerton’s
bioprogram or Slobin’s semantic space)? Our SOFM network, through the
self-organisation of multiple semantic features, develops concentrated pat-
terns of activity that correspond to cryptotypes (in the case of prefix acquisi-
tion) and verb categories (in the case of suffix acquisition). Note that the
actual identity of each of the semantic features is unknown to the modeller,
because the features encode lexical co-occurrence constraints in a high-
dimensional space (see the discussion of input representations on pp. 129~
130; see also p. 124). This contrasts with traditional hand-crafted or ad hoc
features. Our simulation results suggest that connectionist mechanisms as
implemented in our model can indeed capture critical aspects of semantic
organisation and category formation in language acquisition, without making
a priori assumptions about the intangibility or the innate nature of lexical
semantics.

One might argue that our input representations already contain a rich set
of semantic information (as in the HAL semantic vectors), and so it is mis-
leading to claim that the network is acquiring semantic categories. This
argument should be considered in at least two perspectives. First, our net-
work takes in only individual verbs as input, in no structured order, but with
each verb having information of lexical co-occurrences. What the network
needs to do is to re-represent the lexical co-occurrence information in such a
way that the resulting two-dimensional map can maximally preserve the simi-
larity of verbs in the original high-dimensional space. This is a process in
which the network attempts to discover the underlying structure or organisa-
tion for all the verbs in question. None of this structural or organisational
information is labelled in the individual verbs, but derived only by the
statistical procedure of the network.

A second, and perhaps more important perspective, is to consider that the
learner has two simultaneous processes, one that organises the lexical
co-occurrence information into meaningful structures (as in SOFMs), and
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another that extracts the co-occurrence information from the corpus (part of
the language experience). In fact, we have recently built a model that does just
that. In Farkas and Li (2001, 2002), we developed a connectionist model that
acquires lexical knowledge from the learning of distributional characteristics
of words. The model consists of two subnetworks: one learns word tran-
sitional probabilities in sentence contexts, and the other-—a SOFM-—reads
these probabilities as distributed representations and self-organises them. We
applied the model to a CHILDES parental data set and found that the model
is able to acquire grammatical and semantic categories through learning in
the corpus. In addition, the network demonstrates ability to develop rather
accurate representations even with sparse training data, contrary to what is
commonly expected of large-scale statistical learning models that typically
compute tens or hundreds of millions of lexical items in the corpus.

Thus, the argument here is that the linguistic input to the learner contains
very rich distributional information, and our network as well as the child can

explore and extract from the input the necessary semantic categories (see-

Rohde & Plaut, 1999, and Seidenberg & MacDonald, 1999, for similar argu-
ments in the case of grammar induction). Instead of assuming that certain
semantic categories are available ahead of time for the child, we need only to
make a few simple assumptions about what the child can do: (1) the child has
the ability to track continuous speech with some limitation on working mem-
ory; and (2) the child is sensitive to lexical co-occurrence probabilities during
language comprehension. Such statistical abilities seem to be readily available
to the child at a very early age, as studies of statistical learning in infants have
revealed (Saffran, Aslin, & Newport, 1996; Saffran et al., 1997). Note that
such assumptions differ from the empiricist tabula rasa approach to the learn-
ing problem, as illustrated clearly by Elman, Bates, Johnson, Karmiloff-Smith,
Parisi, and Plunkett (1996) on connectionist learning. Along the arguments of
Elman et al., I suggest that specific linguistic categories (e.g. semantic categor-
ies discussed here) are not innate; rather, the learner has available a set of
statistical mechanisms (which can be operationalised as connectionist prin-
ciples), and these mechanisms, when applied onto the linguistic input, can
yield relevant semantic or grammatical categories. Our modelling results
show exactly how such categories can emerge naturally from connectionist
learning of the statistical properties of lexical and morphological uses.
Finally, our modelling endeavour has also attempted to make a connection
between structured semantic representations and the acquisition of morpho-
logy. Our SOFM network, when coupled with Hebbian learning, produces
developmental patterns of both overgeneralisation (in prefix acquisition) and
undergeneralisation (in suffix acquisition) that mirror empirical data in child
language. Our analyses of the simulations indicate that these generalisation
errors naturally result from the structure of the network’s semantic represen-
tations (a result of self-organisation) and from the focused associative
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pathways in the mappings between semantic features, lexical forms, and mor-
phological markers (a result of Hebbian learning). Further analyses also
show that our network is able to recover from the generalisation errors as
learning progresses, achieved by the readjustment of the associative weights
between forms and meanings via Hebbian learning. These analyses suggest
that the learning of a morphological affix is not simply the learning of a rule
(leaving alone the fact that it is unclear what the rule is, as per Whorf on
the use of un-), but the accumulation of associative strengths that hold
between a particular affix and a complex set of semantic features distributed
across verbs. This learning process can be best described as a statistical
process in which the learner implicitly tallies and registers the frequency of
co-occurrences (strengthening what goes with what) and identifies the
co-occurrence constraints (inhibiting what does not go with what) among the
semantic features, lexical forms, and morphological markers.

To conclude, our self-organising neural network model of language acqui-
sition provides significant insights into the mechanisms and processes of lan-
guage acquisition. It may also serve to stimulate further empirical research,
because the model often generates detailed patterns that are not yet available
from empirical studies. Future research in our laboratory involves the devel-
opment of models that tie even more closely to realistic language learning, for
example, in the dynamic growth of networks’ processing resources, automatic
extraction of contextual constraints, and the dynamic representation of
lexical-semantic information.
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