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Rumelhart and McClelland’s (1986) connectionist model
of the acquisition of the English past tense had a profound
positive impact on the fields of artificial neural networks,
language acquisition, and cognitive psychology. However,
that model was also heavily criticized for the way it repre-
sented phonological patterns of the verbal input. The fun-
damental structure of the past tense learning model was a
nonstandard phonological structure called the Wickelfea-
ture. Critics (Lachter & Bever, 1988; Pinker & Prince,
1988) argued that these distributed feature structures were
unable to faithfully represent the phonological structures
of words and the differences between words. As a result of
these problems, connectionist researchers subsequently
abandoned the use of Wickelfeatures as a way to repre-
sent phonological input, using instead a variety of alterna-
tive systems for phonological representations. These
methods fall roughly into three categories.

The first class of methods (e.g., Plunkett & Marchman,
1991, 1993) treats the word as a simple string of phonemes.
For example, Plunkett and Marchman used 6 binary units
to code each of the three positions in a set of English
consonant–vowel–consonant (CVC), VCC, and CCV word-
like strings. Features included voicing, sonority, and place
and manner of articulation. Because each of the three seg-

ments used six features, 18 units were needed to code a
three-phoneme word. A representation of this type pro-
vides only an approximation to the phonology of words,
owing to its use of arbitrarily determined binary values for
phonological features. In addition, the representation ac-
commodates only a limited number of monosyllables. Be-
cause of these problems, it is not a good choice for simu-
lations that attempt to model the learning of a realistic
lexicon.

Miikkulainen (1997) used a variant of this scheme with
five units on a continuous scale to represent the phonolog-
ical features of each English phoneme. In his scheme, a word
is a simple concatenation of its component phonemes. This
extended representation scheme can accommodate words
beyond monosyllables. It also provides a more accurate
representation of the phonological features, because of its
use of continuous units instead of binary units. However,
it has problems capturing the similarity between words of
different phonemic lengths. For example, spot and pot in
this coding will end up sharing very little similarity, be-
cause phonemic concatenation leads to dislocated posi-
tioning of similar phonemes: For spot, Units 1–5 represent
/s/ and Units 6–10 represent /p/, whereas for pot, Units
1–5 represent /p/ and Units 6–10 represent /Á/, and so on.
Thus, the same phoneme activates completely different
units in the representation (see Plaut, McClelland, Sei-
denberg, & Patterson, 1996, for a discussion of a similar
problem in orthographic representations).

A second method for representing phonological pat-
terns encodes no more than a single segment at a time. For
example, the NetTalk system (Sejnowski & Rosenberg,
1988) uses a read-head approach to processing, which ac-
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cepts single English orthographic letters one by one and
then outputs the corresponding English sounds. To do this,
the system maintains a local memory of the context. This
form of representation is unable to capture larger phono-
logical patterns and cannot deal with word-based irregu-
larities or nonlocal phonological patterns.

A third method for representing phonological patterns
relies on the slot-based representation introduced by
MacWhinney and Leinbach (1991) and applied in a vari-
ety of later models (Joanisse & Seidenberg, 1999; Plaut 
et al., 1996; Plunkett & Juola, 1999). MacWhinney and
Leinbach showed how the switch from Wickelfeatures to
slot-based representations solved many of the problems
with Rumelhart and McClelland’s (1986) model of past
tense learning. By using slot-based representations, the
phonology of a word is encoded in terms of a template
with a fixed set of slots, rather than as a string with either
a fixed or a variable length or as a series of isolated seg-
ments. This method has its basis in autosegmental phono-
logical theory, according to which phonemes are bundles
of features in metric syllabic grids (Goldsmith, 1976; Le-
velt, 1989). Each segment in a word is assigned to a dif-
ferent slot, depending on which syllable it belongs to and
whether it appears in the syllable’s onset, nucleus, or coda.
For a monosyllabic word, it is relatively simple to assign
phonemes to their appropriate positions. For example,
Joanisse and Seidenberg used the CCVVCCC template to
represent English monosyllables, in which a consonant
initial would occur in the first C position and consonant
clusters would occupy the first two CC positions; single
vowels occur at the first V position, but diphthongs oc-
cupy both VVs, and so on. Plunkett and Juola used a CC-
CVVCCC template, which could additionally accommo-
date consonant clusters such as /str/ at the word-initial
position. Thus, in this type of coding, spot could occur 
as spCoVtCC in the template, whereas pot could occur 
as CpCoVtCC, thus preserving their phonological simi-
larities.

The representations used by Joanisse and Seidenberg
(1999) and by Plunkett and Juola (1999) are restricted to
monosyllables. MacWhinney and Leinbach (1991) also
used slots to represent multisyllabic English verbs. For
example, a full trisyllabic template in MacWhinney and
Leinbach’s representation had a CCCVVCCCVVCC-
CVVCCC form. Recently, Bullinaria (1997) presented a
model that combined the slot-based representation with
aspects of the single-segment processing used in NetTalk.
However, it appears that the successes of that model are
based largely on its use of slot-based templates. The slot-
based representation captures the phonological similarity
structure better, thereby promoting better generalization
in connectionist models. Note that this virtue comes with
a price: The representation becomes longer and computa-
tionally more expensive. For example, with 18 binary
units and seven slots, it takes 126 units to code a mono-
syllable (Joanisee & Seidenberg, 1999). Even in the con-
densed representations used by MacWhinney and Lein-
bach, 214 units are needed to encode a full trisyllabic
structure.

In this paper, we will introduce a phonological pattern
generator (PatPho) that builds on the idea of syllabic tem-
plates, while at the same time capturing phonological sim-
ilarities more accurately and reducing the dimension of
computationally costly representations. Our primary goal
is to provide an accurate representation system for the
phonology of English words and a computational tool
(PatPho) that facilitates the generation of phonological
patterns based on this system. Note that PatPho is not a
complete phonological learning model per se, but, rather,
a representational tool that allows connectionist researchers
to compose input word representations that can capture
the similarity structure of lexical phonology. Thus, use of
PatPho can significantly increase the accuracy and ease of
the task of connectionist language modeling. Although
PatPho is designed for researchers who wish to derive
phonological patterns of English words of variable length
(monosyllabic, disyllabic, and multisyllabic), this method
can also be used for languages other than English (see
MacWhinney, Leinbach, Taraban, & McDonald, 1989).1

METHOD

Phonological Features
Connectionist researchers have used various phonolog-

ical features to characterize phonemes in a given language,
all of which are based on some type of phonological/
acoustic analyses (although this is often not explicitly dis-
cussed). In selecting phonological features for English
phonemes, we decided to use as our basis the articulatory
phonetic features as outlined in Ladefoged’s (1982) well-
known textbook, A Course in Phonetics. Ladefoged illus-
trated the different levels of dimensions that can be used
to distinguish consonants (cf. Figure 2.1; p. 33) and vow-
els (cf. Figure 2.2; p. 34). (1) For consonants, there are two
major dimensions, manner of articulation and place of ar-
ticulation. Within manner of articulation, Ladefoged dis-
tinguished five levels: nasal, stop, fricative, approximant,
and lateral. Within place of articulation, he distinguished
eight levels: bilabial, labio-dental, dental, alveolar, palato-
alveolar, palatal, velar, and glottal. (2) For vowels, there
are two major dimensions, height and tongue position.
Within height, Ladefoged distinguished five levels: high,
mid-high, mid, mid-low, and low. Within position, he dis-
tinguished three levels: front, central, and back.2

Ladefoged’s (1982) classification gives rise to 40 (5 man-
ner 3 8 place) manner/place types for consonant, and 15
(5 height 3 3 position) height/position types for vowels.
The 40 manner/place types can easily distinguish the 24
English consonants (including the two affricates, and
/ /), and the 15 height/position types can distinguish the
14 vowels (including /e/ and /a/, which occur only in 
diphthongs— e.g., /eI/ and /aI/). Our proposed PatPho
representation includes each of these two dimensions. In
addition, we introduce a third dimension, phoneme status,
to determine whether a given segment is a vowel or a con-
sonant. We will also use this third dimension to charac-
terize whether a consonant is voiced or voiceless. Thus,
we need a minimum of three units to represent the three di-
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mensions of articulatory features for each English
phoneme, as in Table 1.

In Table 1, the first column represents the ASCII sym-
bols of the English phonemes (as used in the CELEX data-
base; Baayan, Piepenbrock, & van Rijn, 1995), the second
the IPA symbols, and the third the examples. The fourth
through sixth columns are the three proposed dimensions
(D1– D3). Note that D2 and D3 lump together two kinds
of features (D2, position for vowels and manner of artic-
ulation for consonants; D3, sonority for vowels and place
of articulation for consonants). This juxtaposition pro-
vides a way to condense the representation but makes it
difficult to name the dimension uniformly. One could al-
ternatively use separate dimensions to represent each of
the features for vowels and for consonants, in which case
five (instead of three) dimensions would be required, as is
done in Miikkulainen (1997). In that case, the five dimen-
sions would be status, manner, place, height, and position. 

Table 1 follows the phonological features of Ladefoged
(1982) as closely as possible, with four exceptions.

1. /h/ (voiceless, glottal, approximant) is added in the table;
Ladefoged (1982) did not include this phoneme in his
scheme because he considered it simply as a voiceless
counterpart of its subsequent vowel.

2. /Æ / (“3,” vowel, central, mid) is added in the table; this
vowel is assigned the value of mid to be distinguishable
from /ö/ (“V”), even though both should be mid-low in ar-
ticulation.

3. For the same reason as in (2), /I/ and /e/ are assigned mid-
high and mid, respectively, even though both should be
mid-high in articulation.

4. Similarly, O (“O”), /Á/ (“Q”), and A (“A”) are as-
signed mid, mid-low, and low for differentiation, respec-
tively, even though they should be mid-low ( O ) and low
(/Á/ and A ).

Table 1
The Representation of English Phonemes

by Three Phonological Dimensions (D1–D3)

Phonemes IPA Examples D1 D2 D3

i i tea vowel front high
I I pit vowel front mid-high
e e bay vowel front mid
E e pet vowel front mid-low
& { pat vowel front low
@ @ above vowel central mid-high
3 Æ burn vowel central mid
V ö but vowel central mid-low
a a buy vowel central low
u u: put vowel back high
U V foot vowel back mid-high
O O born vowel back mid
Q Á pot vowel back mid-low
A A barn vowel back low
p p pit voiceless bilabial stop
t t tip voiceless alveolar stop
k k kick voiceless velar stop
b b bit voiced bilabial stop
d d dip voiced alveolar stop
g g game voiced velar stop
m m mad voiced bilabial nasal
n n net voiced alveolar nasal
N Î ping voiced velar nasal
l l lip voiced alveolar lateral
r r rip voiced alveolar approximant
f f few voiceless labio-dental fricative
v v view voiced labio-dental fricative
s s sad voiceless alveolar fricative
z z zoo voiced alveolar fricative
S S shoe voiceless palato-alveolar fricative
Z Z measure voiced palato-alveolar fricative
j j yip voiced palatal approximant
h h hop voiceless glottal approximant
w w witch voiced velar approximant
T Õ thin voiceless dental fricative
D D then voiced dental fricative
C cheap voiceless palatal fricative
J jeep voiced palatal fricative

Note—IPA, International Phonetic Alphabet.
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It is important to note that these four additional assign-
ment decisions are specific to English. When applying this
three-dimensional system to other languages, other assign-
ment customizations may be necessary in order to maxi-
mize the utility of the coding.

Feature Conversion
To convert the above articulatory features to numerical

representations for each phoneme, we replaced the features
with numerical values, scaled between the range of 0 and 1.
Thus, the closer the numerical values are, the more similar
the articulatory features should be, as in Table 2 (upper panel
for vowel features, lower panel for consonant features). For
D1, the values for voiced (.750) and voiceless (1.0) are
closer to each other than to that for vowel (.1) so that we can
maximally distinguish the vowels and consonants. For D2,
the position features of vowels (front, central, back) are
closer to each other than to the place features of the conso-
nants. This provides additional contrast between the vow-
els and the consonants. For D3, the height features of vow-
els are closer to each other than to the manner features of
consonants, further separating the two types of sounds.
Within each subgroup of features, the numerical distances
are spaced evenly. With this conversion table, we can then
represent all the English phonemes (14 vowels and 24
consonants) with only three dimensions, as in Table 3.

A hierarchical cluster analysis (Manly, 1994) was ap-
plied to the three values of all phonemes. Figure 1 presents
the result of this analysis in a dendrogram. It shows that
phonetically similar phonemes are grouped together (i.e.,
close in distance space): The higher up the phonemes are
connected in the cluster tree, the more dissimilar they are.
One can also see three general clusters (vowels, voiceless
consonants, and voiced consonants) in the dendrogram.
This analysis indicates that the above representation
scheme accurately captures the similarity structure of
English phonemes, as well as the overall distances be-
tween vowels and consonants and between voiced and
voiceless consonants (note that /b/ and /m/ have been
treated as outliers to the consonants in this analysis, per-
haps owing to their unique combination of voiced and bi-
labial features).

An alternative to the above conversion is to use binary
codes to represent the features. This alternative approach
provides a clearer representation with fewer additional as-
sumptions. We have implemented this type of binary rep-
resentations in PatPho. Table 4 shows the corresponding
look-up table (cf. Table 2) that we used to convert the
phonological features with binary coding. In Table 4, the
vowels and the consonants are coded differently with dif-
ferent number of binary units, given that there are differ-
ent numbers of vowel features versus consonant features
to consider. For the vowels, only five units are needed to
code the three tongue positions (two units) and the five
height levels (three units). For consonants, however, we
need seven units to code the voicing (one unit), the place
of articulation (three units), and the manner of articula-
tion (three units).

Vector Representations
In a string-based representation (Miikkulainen, 1997),

we could simply concatenate the values of the three di-
mensions in Table 3 for all the phonemes of a word to
form the phonological representation. Thus, cat /k{t/ and

Table 3
Three-Dimensional (D1–D3) Representation

of English Phonemes 

Phonemes D1 D2 D3

i 0.100 0.100 0.100
I 0.100 0.100 0.185
e 0.100 0.100 0.270
E 0.100 0.100 0.355
& 0.100 0.100 0.444
@ 0.100 0.175 0.185
3 0.100 0.175 0.270
V 0.100 0.175 0.355
a 0.100 0.175 0.444
u 0.100 0.250 0.100
U 0.100 0.250 0.185
O 0.100 0.250 0.270
Q 0.100 0.250 0.355
A 0.100 0.250 0.444
p 1.000 0.450 0.733
t 1.000 0.684 0.733
k 1.000 0.921 0.733
b 0.750 0.450 0.733
d 0.750 0.684 0.733
g 0.750 0.921 0.733
m 0.750 0.450 0.644
n 0.750 0.684 0.644
N 0.750 0.921 0.644
l 0.750 0.684 1.000
r 0.750 0.684 0.911
f 1.000 0.528 0.822
v 0.750 0.528 0.822
s 1.000 0.684 0.822
z 0.750 0.684 0.822
S 1.000 0.762 0.822
Z 0.750 0.762 0.822
j 0.750 0.841 0.911
h 1.000 1.000 0.911
w 0.750 0.921 0.911
T 1.000 0.606 0.822
D 0.750 0.606 0.822
C 1.000 0.841 0.822
J 0.750 0.841 0.822

Table 2
Conversion of Phonological Dimensions (D1–D3)

to Numerical Representations 

D1 D2 D3

Vowel 0.100 front 0.100 high 0.100
central 0.175 mid-high 0.185
back 0.250 mid 0.270

mid-low 0.355
low 0.444

Voiced 0.750 bilabial 0.450 nasal 0.644
Voiceless 1.000 labio-dental 0.528 stop 0.733

dental 0.606 fricative 0.822
alveolar 0.684 approximant 0.911
palato-alveolar 0.762 lateral 1.000 
palatal 0.841
velar 0.921
glottal 1.000
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pat /p{t/, which have the CVC structure, would be repre-
sented as the following vectors, numerically (each phoneme
in the CVC structure is represented by three feature units):

cat 1.000 0.921 0.733 0.100 0.100 0.444 1.000 0.684
0.733

pat 1.000 0.450 0.733 0.100 0.100 0.444 1.000 0.684
0.733.

We can see that these two vectors differ only by the sec-
ond unit, and a corresponding gray-scale representation
shows this more clearly, as in Figure 2 (white indicates 1
and black 0).

However, as was discussed earlier, this type of repre-
sentation becomes problematic when words of varying
lengths are considered. Thus, we adopted the syllabic tem-
plate scheme for our vector representations, as imple-
mented in PatPho. In PatPho representations, each word
consists of phonemes that are made up of phonological
features in a syllabic template: A full trisyllabic template
would be CCCVVCCCVVCCCVVCCC, with each CCC-
VV representing one syllable and the last CCC represents
consonant finals. This trisyllabic template has 18 conso-
nant (C) and vowel (V) units. Using three articulatory fea-
tures to represent each C and V, then, any word up to three
syllables will be represented as a vector of 54 units. For
example, cat (monosyllabic), pat (monosyllabic), patio
(disyllabic), and catalyst (trisyllabic) differ in terms of
numbers of phonemes and syllables. Their phonological

representations in our scheme would look like Figure 3 (in
gray-scale).

As can be seen from this example, the longer the word
is, the greater the number of active units is in the vector
representation. Units that are solid black are inactive.
Monosyllables have active phonological features only in
the first 18 units (CCCVVC), whereas trisyllabic words
have active features in all units of the template. Even tri-
syllables will have some inactive units when they have a
single vowel segment in the nucleus or a single consonant
rather than a cluster in the onset or coda.

This representational scheme allows us to easily repre-
sent multisyllabic words with a reasonable number of di-
mensions. To represent all English words up to three syl-
lables, we need a template of only 54 units, and to represent
all English words up to six syllables, we need a template
of only 108 units. The system thus provides a significant
reduction in the size of representation, as compared with
the 162 units required only for monosyllables in models
such as that of Joanisse and Seidenberg (1999).

Figure 1. Dendrogram of the phonemic distances by hierarchical cluster
analysis. Clear clusters can be discerned on the dendrogram’s upper and lower
branches (vowels vs. consonants) and within the lower branch (voiceless vs.
voiced consonants). Scale of distance (Euclidean distances between phoneme
representations) ranges from 0.07 (most similar; e.g., between /a / and /&/ ) to
1.05 (most dissimilar; e.g., between a vowel and a consonant).

Figure 2. Gray-scale representation of phonemic features for
cat and pat.

cat 

pat
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In Table 4, we provided an alternative to code the fea-
tures with binary values. That implies that we need more
dimensions for the vectors. Thus, for a full trisyllabic
word (i.e., with the template of CCCVVCCCVVCCCVV-
CCC), the vector length will be 114 units (7 3 12 C slots
plus 5 3 6 V slots). This is twice as long as the vectors
with real values, although still significantly more compact
than the other aforementioned schemes. Clearly, there is a
tradeoff between the number of dimensions and the den-
sity of data storage: For the binary vectors, each unit re-
quires only one bit of storage (hence, the longer dimen-
sions), whereas for the continuous value vectors, each unit
stores many bits of information (hence, the shorter di-
mensions). In our own simulations, we have found that use
of binary representations can add a small degree of cod-
ing precision that improves the final learning outcome.
However, this effect is typically small, involving an in-
crease in accuracy of only two to three percentage points,
at the most. Moreover, for larger problems, the use of bi-
nary vectors can significantly slow down the running of
simulations. Thus, PatPho representations generally take
longer to compute for the same program if binary instead
of real value vectors are used (owing to the greater num-
ber of feature units in the representation). But if comput-
ing time is not a main concern (or if algorithmic shortcuts
can be found), researchers may favor the use of the binary
representations.

Justification of Phonemes in the Template
In the example shown in Figure 3, all the phonemes

within a given syllable are encoded in the first available C
or V slots in the template. This is called the left-justified
representation. For example, cat would be encoded as kC-
C{VtCCVVCCCVVCCC and catalyst as kCC{VtCCa

VlCCIVstC in a left-justified representation. Alterna-
tively, we can use right-justified representations, in which
we start from the rightmost Cs of the template. For exam-
ple, cat would be encoded as CCCVVCCCVVCCk{CCt
and catalyst as CCk{CCtVaCClVICst in a right-justified
representation. Left-justified representations place em-
phasis on phonological similarities at the beginnings of
words in linguistic processing (see Marslen-Wilson, 1987;
Treiman & Zukowski, 1996), and this type of representa-
tions would be particularly appropriate, for example, for
models that simulate the acquisition of prefixes (e.g., Li &
MacWhinney, 1996), in which the initial contrasts of pho-
nemes are at stake. Right-justified representations, on the
other hand, are more appropriate for models that empha-
size the phonological similarities at the ends of words in
language acquisition (see Slobin, 1985), such as models of
the acquisition of tense-aspect suffixes (Joanisse & Sei-
denberg, 1999; Li, 2000; Li & Shirai, 2000; MacWhinney,
1993; MacWhinney & Leinbach, 1991).

In a right-justified representation, the examples in Fig-
ure 3 would thus look like those in Figure 4. Comparing
this figure with Figure 3, we can clearly see the effects of
left- versus right-justification on how phonological simi-
larities are represented and captured (differently) in these
vectors. 

A potential problem with the right-justification method
is that the representations of the inflected forms and their
stems will become very different, since the suffix (e.g., -ing
of seeing) may occupy the rightmost syllable slot, whereas
the root (e.g., see of seeing) occupies the next-to-rightmost
slot. In fact, the same problem occurs with left-justification
for prefixes. One way to solve this problem is to reserve
an extra syllable slot for the affixes (i.e., the prefix or the
suffix slots), so that all root forms will be shifted to the
second syllable slot (for a prefix) or the second last sylla-
ble slot (for a suffix). Manipulations of this type, of course,
would require careful considerations of the characteristics
and phonotactics of the target language; PatPho is, so far,
limited in handling the many typological variations of
morphology and phonotactics that one finds in natural
languages (e.g., infixation, as opposed to prefixation and
suffixation).

PATPHO: AN IMPLEMENTATION

To implement the above scheme of phonological repre-
sentation, we built the PatPho program that can automat-
ically generate phonological vectors for English words of
variable length. To derive representations for a large-scale
lexicon, we extracted the phonological codings for all
English words from the CELEX database, and after some

Figure 3. PatPho representations for words of variable syllabic length: cat, catalyst, pat, and patio.

Table 4
Conversion of Phonological Dimensions (D1–D3)

with Binary Codes

D1 D2 D3

Vowel front 01 high 011
central 11 mid-high 001
back 10 mid 101

mid-low 110
low 100

Voiced 0 bilabial 000 nasal 001
Voiceless 1 labio-dental 001 stop 010

dental 010 fricative 100
alveolar 011 approximant 011
palato-alveolar 100 lateral 110
palatal 101
velar 110
glottal 111

cat 

catalyst 

pat 

patio
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preprocessing (e.g., removing the stress markers and syl-
labic hyphens), we submitted the CELEX codings to Pat-
Pho. The CELEX database is organized either by lemmas
(excluding all inflections, a total of 39,780 items) or by
word forms (including all inflectional forms of a word, a
total of 73,211 items). Thus, PatPho can be used to gen-
erate representations either for lemmas or for word forms,
depending on whether the researcher is interested in mod-
eling inflectional variations of a word. Although our phono-
logical output representations are based on the CELEX
database, PatPho can, in principle, take any phonological
codings as input and generate corresponding phonological
representations. Currently, PatPho can generate phono-
logical representations for all English words up to three
syllables (a total of 31,114 lemmas and 58,265 word
forms), which cover about 80% of the English lexicon as
recorded in the CELEX database. The program can easily
be extended to encode still longer syllable strings.

To evaluate whether PatPho generates accurate phono-
logical representations, we examined the euclidean dis-
tances between words in a randomly selected sample of
180 vectors/words. This analysis shows that the smaller
the Euclidean distances are, the more phonologically sim-
ilar the two words are. For example, the closest distances
in this sample were between word pairs like look and lock,
work and walk, and curl and call. In addition, to verify that
the representation scheme is adequate for modeling pur-
poses in actual simulations, we trained a self-organizing
feature map (Kohonen, 1989) to learn the PatPho repre-
sentations of 1,000 English words. The network achieved
a 96% recognition rate—that is, it can successfully differ-
entiate almost all words, except some homophonic words
(e.g., too and two, see and sea).

The program source code, along with installation in-
structions and sample representation outputs, is available
at http://cogsci.richmond.edu/patpho/patpho.sit. A set of
12 text files serves as the user’s documentation on PatPho.
The “README” file contains information about all files
and how each file should be interpreted and used. “Pat-
pho.c” contains the source code in C. Use of “makefile”
allows the user to compile the source code using the GCC
or C11 compiler running under various platforms of
Unix and Linux. After compilation and running of the
program, PatPho produces both left-justified and right-
justified phonological representations for given phono-
logical feature codes (see below). It also produces syllabic
templates for every input word, against which the re-
searcher can verify the phonological output represen-
tations. A sample input f ile with 75 words based on
CELEX phonological codings (“phones.cx”) is included
with the program for testing. For users who want to use

PatPho under the Windows environment, we have also in-
cluded the DevLex simulator, of which PatPho is a special
tool. Clicking on the DevLex icon and then PatPho under
Tools shall evoke the command window for the relevant
parameters.

The PatPho program provides a flexible code that al-
lows individual researchers to tailor the representations to
their own needs. It can output two types of representa-
tions, the real value vectors (54 units) and the binary value
vectors (114 units), to suit individual researchers’ needs.
The researcher needs to specify whether to use continuous
phonemic features (as in the file “phonemes.real.codes”;
see Table 2) or to use binary codes (as in “phonemes.
binary.codes”; see Table 4). Researchers can further mod-
ify the program in two ways. (1) They can modify the 
feature-code file (“phonemes.codes”) so that any number
of phonological feature dimensions can be used in the rep-
resentation: for example, one can replace the dimensions
in Table 2 or Table 4 with codings that contain richer in-
formation about vowel quality or consonant properties, or
use the researcher’s own binary feature codes of each
phoneme (e.g., the 18 binary features as in Joanisse & Sei-
denberg, 1999, or the 16 binary features as in Plunkett &
Juola, 1999). (2) They can run PCA analyses on the bi-
nary representations to derive more efficient and con-
densed representations with any number of vector dimen-
sions. A PCA subroutine can be requested from the
authors for this purpose. The program is also adjustable to
take any ASCII phonemic symbols as input—for exam-
ple, MRPA, CPA, DISC, and UNIBET, in addition to
CELEX (see Baayan et al., 1995, and MacWhinney, 2000,
for discussions of these symbol systems). Or they can
make use of the makemod function in the CLAN program
(MacWhinney, 2000; downloadable from http://childes.
psy.cmu.edu) to generate SAMPA phonetic symbols from
transcribed speech, which can then be read as input by
PatPho. However, researchers need to be aware of the sub-
tle differences between these various symbol systems and
their correspondence to the International Phonetic Alpha-
bet symbols. Whenever in doubt, they should contact the
authors of this article to request more specific informa-
tion about PatPho’s compatibility with those systems.

SUMMARY

Learning of linguistic structure in neural network mod-
els depends heavily on accurate encoding of the statistical
regularities implicit in the phonological properties of
words. These models are important in such areas as child
language acquisition, adult language processing, second
language learning, and language disorders. Researchers

Figure 4. Right-justified PatPho representations for cat, catalyst, pat, and patio.

cat 

catalyst 

pat 

patio

http://childes.psy.cmu.edu
http://cogsci.richmond.edu/patpho/patpho.sit
http://childes.psy.cmu.edu
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have devised several methods for representing the phonol-
ogy of words, but these methods are often either unable to
represent realistically sized lexicons or inadequate in the
ways they represent individual words. In this paper, we
presented a new phonological pattern generator (PatPho)
that allows connectionist researchers to derive accurate
phonological representations of the English lexicon. Pat-
Pho not only generates phonological patterns that can
scale up to realistically sized lexicons, but also captures
the similarity structures of the phonology of words accu-
rately and parsimoniously. 

PatPho builds on the idea of syllabic templates for cod-
ing phonemes of words, while at the same time attempt-
ing to reduce the potentially large dimensions associated
with such a method. It avoids the huge dimensions by con-
densing the phonological features of phonemes. To cap-
ture the phonological properties of words accurately, the
system uses articulatory features as outlined in Ladefoged
(1982). PatPho is designed for neural network researchers
who wish to derive phonological representations of Eng-
lish lexical items of variable length. Although PatPho has
been designed for use in English, the method and the idea
on which it is built can be used for other languages as well.
The program itself can also be modified to generate phono-
logical representations for other languages.
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NOTES

1. We have already used it successfully to generate phonological pat-
terns for all monosyllables in Chinese. See Xing, Shu, and Li (2002).

2. Note that from a phonetician’s perspective, this is still a rough char-
acterization of vowels. For example, the two dimensions say nothing
about the variation in the degree of lip rounding in different vowels.
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