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1. Introduction

While it is common practice for researchers in psychology and other
social sciences to use inferential statistical methods such as t-test, F-test,
and chi-square test, it is only the beginning for linguists and investigators
of language acquisition to get acquainted with the full power of inferential
statistics. As the linguistic science becomes more quantitative, there have
been admirable efforts to introduce statistics into the field, with the
publications of several statistics books specifically designed for linguists
(Anshen, 1978; Butler, 1985; Hatch & Farhady, 1982; Woods, Fletcher, &
Hughes, 1986; see Grotjahn, 1988, for a review). However, none of these
books has discussed a very important statistical method for the analysis of
categorical data, the loglinear analysis — a method that has nevertheless
been applied widely in sociology and other social sciences. In this paper, I
will first examine a problem that many researchers in language acquisition
may have encountered, i.e., the limited power of the analysis of
categorical data by the use of chi-square. I will then discuss how loglinear
analysis overcomes the problem. Although descriptions about loglinear
analysis are available in many statistics books, they are in general not
easily accessible to language acquisition researchers because of their
technicality and mathematical flavor. For this reason, I will deliberately
avoid very technical descriptions here, but will instead present the
rationale behind the method, the basic procedures involved in the analysis,
and a real example that makes use of this method to illustrate the
significance of loglinear analysis for language acquisition data..

2. Limitations of Chi-Square

Chi-square (1) test, like the analysis of variance (ANOVA), is one of
the most frequently used statistic methods in child language studies. One
reason for the popularity of this method is that most child language data
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involve observations classified into different categories, and the
observations are represented by frequency counts of a given behavior
under a given condition for a given group of children, and thus, chi-square
test, a goodness-of-fit test, is the most suitable method. It tests how well
under given conditions the observed frequencies (Fy) fits the expected
frequencies (F,) on the basis of the null hypothesis that there are no
differences between groups or conditions. If the discrepancy between F),
and F, is large enough with respect to the relevant degrees of freedom @an,
then we can reject the null hypothesis and entertain our research
hypothesis that there are differences. But if the discrepancy is small, then
we cannot reasonably reject the null hypothesis.

Table 1 The Use of -ed vs -ing in English-Speaking Children’s Early
Productive Speech: Hypothetical Data (1)

Inflectional Markers

Verb Types od ing Total
Resultative 43 62 105
Non-resultative 17 38 55
Total 60 100 160

In most cases when we use chi-square we are concerned with the
relationship between the individual classification variables, that is, with
whether they are independent of each other or whether they interact to
affect the outcome of our observations. A simple example here can
illustrate this. Suppose that we want to investigate English-speaking
children’s acquisition of verbal inflections. We are interested in whether
there is a difference between the use of the past tense marker -ed and the
use of the progressive marker -ing in children’s early productive speech,
and whether this difference is associated with the semantic categories of
verbs (for empirical studies of this kind, see Bloom, Lifter, Hafitz, 1980;
Harner, 1981; McShane & Whittaker, 1988; see Li and Shirai 2000, for a
review). Suppose further that we collected data from a total of 160
children, in which each child had one utterance describing a given enacted
situation. The verbs in children’s utterances could be classified into two
types, resultative versus non-resultative, according to whether the verb
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indicates an end result (e.g., break) or not (e.g., walk). Counting the
occurrences of -ed and -ing in these utterances, we could get the results in
Table 1.

If the null hypothesis for this set of data is true, then we would expect
that F%, in a particular cell (i.e., the combination of a particular morpheme
with a particular verb) to be the product of its marginal totals divided by
the grand total (for example, the cell occupied by 43 should be
(105%60)/160 = 39.38). If all the observed frequencies F, are the same as
or similar to their corresponding expected frequencies, then there is
evidence that the variables are fully independent of each other in the
outcome of the observations. A chi-square test performed on the data in
Table 1 indicates that we cannot reject the null hypothesis: the use of -ed
versus -ing in children’s early productive speech is independent of the
types of verb with which they are used (3* = 1.55, df=1, p>.05). There is
no statistical evidence that children’s acquisition of the past tense marker

and the progressive marker is associated with the semantic properties of
verbs.

Table2 The Use of -ed vs -ing in English-Speaking Children’s Early
Productive Speech: Hypothetical Data (2)

3-YEAR-OLDS 5-YEAR-OLDS

Verb Types
-ed -ing -ed -ing Total
Resultative 58 47 43 62 210
Non-resultative 12 43 17 38 110
Total 70 90 60 100 320

However, the application of chi-square test is greatly limited if we have
a design that is just slightly more complex than the example described
above. In the example given above, we were concerned with what is called
a “2 x 2 contingency table”, in which there were only two classification
variables involved (2 inflectional markers by 2 verb types). If we were to
study more than two classification variables, we would have a problem
with this simple chi-square method. For example, in addition to the use of
-ed versus -ing with respect to verb categories, we are interested in the
developmental patterns for the acquisition of these morphemes, and so we
need to have a third variable “age” in our design. To take a simple case, let
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us test only two age groups: 3-year-olds versus 5-year-olds, under the
same conditions as in Table 1. Thus, we could have a new 2 x 2 x 2 design
(2 inflectional markers by 2 verb types by 2 age groups), as in Table‘ 2.

In principle, one could run two separate chi-square tests on the different
age groups to test whether the use of -ed versus -ing is independent of the
verb types in children’s speech. And if there are more age groups, one can
run more separate individual tests. However, doing so risks a higher “Type
I Error” (rejecting the null hypothesis when it is actually true). This is
because if we carry out two separate chi-square tests at the .05
significance level, the probability that at least one test will lead to Type I
Error has increased to 1 — (.95)2 = .097, rather than .05. The more
separate tests we do, the more likely it is for us to make a Type | Error.

For the analysis of data with more than two variables, chi-square is
insufficient also because it cannot locate the exact patterns of effects
(interaction effects as well as main effects) from different variables. Chi-
square only tests the hypothesis of the independence between variables,
while most often researchers want to know about both the main effects
contributed by individual variables and the interaction effects contributed
jointly by two or more variables, as is often shown by analysis of variance
(it is obvious that the kind of data above cannot be tested using analysis of
variance, since they are categorical in nature; see Howell, 1999). In view
of these limitations of chi-square, we see loglinear analysis as a great tool
to study individual effects and joint effects of classification variables with
categorical data.

3. Basic Principles of Loglinear Analysis

Loglinear analysis has in recent years become a very important
technique for the analysis of complex cross-classified categorical data. A
number of references are available to researchers in the social and
behavioral sciences (Bishop, Fienberg & Holland, 1975; Christensen,
1997; Everitt, 1977; Gilbert, 1981; Green, 1988; Kennedy, 1992; Knoke
& Burke, 1980; Marascuilo & Busk, 1987). In loglinear analysis, a major
task is to search for models that fit the observed data. The key procedure is
to specify and compare loglinear models. A model, in this context, is a
hypothesis or a conceptual framework about the observations in the data.
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Each model represents the observed frequencies as realizations of some
underlying probabilities. For example, the following independence model
involves two variables and it specifies that the probability of a given
frequency at the ij-th cell (represented as Fij ) is the product of the
marginal probabilities (pi, and p.j),

Fij =pi p; (1)

The probability in this model can also be expressed as the sum of the
marginal probabilities by the use of natural logarithms on both sides of the
equation, as in the following:

logFij =logp; tlogp; (2)

Model (2) is thus a loglinear model in which the logarithms of the
probabilities form a linear combination. Much like in multiple regression
or analysis of variance, loglinear analysis breaks down frequency
probabilities into additive components. In this way, the contributions of
each variable to the data and its interaction with other variables can be
evaluated precisely by the comparison between one model and another. It
is in this sense that loglinear analysis is a model-testing method.

Before going on to look at how we do loglinear analysis, let us examine
the general relationship among the models when compared in loglinear
analysis. Loglinear models are hierarchically organized, differing in the
number and complexity of the effects they include: some include only
main effects, others main effects plus association effects (relationship
between two variables), and still others main effects plus association
effects plus interaction effects (relationship between three or more
variables).! In the hierarchical loglinear models introduced here, models
with higher-order effects presuppose the inclusion of the corresponding
lower-order effects; that is, if a model includes an association effect, it
must also include the corresponding main effects, and if it includes an

' In loglinear terminology, a distinction is made between association (two-
way interaction) and interaction (three-way or higher-order interactions). See
Gilbert (1981) for details.
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interaction effect, it must also include the corresponding association
effects and main effects.

To illustrate the difference between alternative loglinear models,
consider a two-dimensional table where the classification variables are
named A and B. There are five possible loglinear models for data in such a
table.

logFij =u 3)
logFij =utui )
logFij =u+tu; (5
logFij =u+tui *u; 6)

logFij =u+twi +u; +uj )

Model (3) is a model with no variable effect: the probability of a
frequency is the same for every cell (u represents the overall mean effect).
Models (4) to (6) are models of main effect, in which ui represents the
main effect of variable A at the i-th cell, and uj the main effect of variable
B at the j-th cell. Model (7) is the association model, which incorporates
the overall mean effect, the main effects of both A and B, and the
association effect (represented as ui;) of A and B (see Everitt, 1977 and
Gilbert, 1981, for detailed procedures for the calculation of u-terms).
Because model (7) includes all possible effects of a 2 x 2 design, it is also
known as the saturated model for a data set with two classification
variables.

The above general principles of loglinear analysis are the same for data
with more than two variables. Although it is generally the case that the
more variables there is the harder it becomes to explain the effects,
loglinear analysis provides a convenient way to locate the detailed patterns
of main effects, associations, and interactions by partitioning them in the
above manner. Unlike in chi-square test, in loglinear analysis we do not
need to carry out individual tests separately. It allows us to test all the
effects in one shot. In the following discussion, main effect models will be

designated as {A} for a variable named A, {B} for variable {B}, and so on.

Models of association or interaction will be designated as {AB} where
variable names are A and B, and so on. The model of no effect is not of
direct interest in loglinear analysis, and thus will not be designated with a

o A R
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label. The four models in (4) to (7) correspond to {A}, {B}, {A}{B}, and
{AB}, respectively, in our new notation.

Like chi-square, loglinear analysis is also a goodness-of-fit test. [t
attempts to determine which models best fit a given set of data. The
algorithm used in loglinear analysis also generates expected cell
frequencies for each model, and, accordingly, it produces goodness-of-fit
statistics (commonly the likelihood ratio statistic, designated as L below)
that indicate how well each model fits the data. Different models are then
compared to determine which effects are responsible for the differences
between the expected and observed frequencies. To evaluate whether a
given effect contributes significantly to the data, the investigator has to
compare models that include the effect with models that do not. The
comparison is done by taking two models at a time and subtracting the I’
value of one from the L® of the other, and the degrees of freedom (df) of
one from the df of the other, and using the critical values of the chi-square
distribution to evaluate the significance of the residual L7 relative to the
residual df (see example below).

In evaluating the various loglinear models for their fit to the data, we
generally use two criteria: adequacy and parsimony. Conventionally,
models with a significance level of .05 or above are considered to provide
an adequate fit to the data.> All adequate models are acceptable as
providing adequate accounts for the data. An alternative criterion for
determining a good fitting model is that a model is good when the L’ value
is about equal to its degrees of freedom (Green, 1988). However, only the
one that accounts for the most of the effects in the data and at the same
time is also parsimonious will be considered the best model. There are two
basic procedures to approach the best model: backward elimination and
forward selection. In backward elimination, the researcher starts from the

* Special attention should be paid here to the interpretation of p values of I
In loglinear analysis, a p value above .05 indicates that a given model fits the
data adequately. Thus the smaller the L% is relative to the df and the closer the
p value is to 1.00, the better the model fits the data. This interpretation differs
from the customary one for a p value, say, of XZ according to which values of
less than .05 are taken to indicate a significant effect. See Knoke and Burke
(1980:30-31) for discussion.
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most complex model, i.e., the saturated model, and eliminates effects from
it one by one, in a stepwise fashion (much like in multiple regression).
Thus, for the models listed in (3) to (7), we first look at model (7), and go
on with model (6) to see if it provides an adequate fit to the data when we
eliminate the association effect uij. If model (7) is acceptable, we can then
go on further to model (5) and (4), in which one of the main effect is
eliminated. Model (3) will not be considered, since we generally cannot
expect a model with no effect to account for our data. The other procedure,
forward selection, is the reverse of backward elimination. In this way, we
start with the simplest model, (4) or (5), in which only one main effect is
incorporated, and then go on to see if other more complex models fit the
data better. For a reasonably large set of data, the compromise between
adequacy and parsimony will usually lead us to a model that is not too
simple, but also not unnecessarily too complex.

4. An Ilustration of Loglinear Analysis with Acquisition Data

In this section, I use a real example to illustrate how we can apply
loglinear analysis to language acquisition data. The data come from a
study on young Chinese-speaking children’s acquisition of aspect markers
(Li, 1990; Li and Bowerman, 1998). The question concerned was whether
the acquisition of different aspect markers in Chinese is associated with
children’s knowledge of different semantic categories of verbs, and what
the developmental pattern is for the acquisition process. Similar questions
concerning the acquisition of tense and aspect in other languages have
provoked much debate in the literature (e.g., Bloom et al, 1981; Bloom &
Harner, 1989; Rispoli, M., & Bloom, L., 1985; Smith & Weist, 1987;
Weist, R., Wysocka, H., Witkowska-Stadnik, K., Buczowska, E., &
Konieczna, E., 1984; see Li and Shirai for a summary). Li examined the
problem with several studies, including an elicited production experiment,
which is discussed here. In the production experiment, 3- to 6-year-old
kindergarteners were asked to describe some situations acted out with toys
by the experimenter. The enacted situations fell into different event types
in order to elicit verbs with different semantic properties in children’s
speech, for example: a duck was swimming, a doll was planting a tree, and
a monkey was standing on a table (see Li, 1990; Li and Bowerman, 1998
for more details of the experiment). The results of this experiment are
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shown in Table 3, which presents the frequencies of occurrence of the
three aspect markers used with each verb type, broken down by age group.
The observed frequency in each cell represents the number of
combinations for a given aspect marker with a given verb type from all the
utterances produced by children in that age group.

Table 3 The Use of Aspect Markers in Chinese-Speaking Children’s Early
Productive Speech

3-YEAR-OLDS 4-YEAR-OLDS
Verb Types -ne zai -le Total -ne  zal -le  Total
Process 32 13 21 66 45 14 19 78
Resultative 0 0 71 71 0 1 85 86
Telic 2 0 20 22 1 0 18 19
Punctual 11 4 5 20 15 7 7 29
Stative 16 3 15 34 23 2 17 42
5-YEAR-OLDS 6-YEAR-OLDS
-ne zai -le Total -ne zai -le Total
Process 30 24 18 72 52 26 7 85
Resultative 0 1 71 72 0 1 103 104
Telic 0 1 20 21 0 2 20 22
Punctual 16 15 9 40 20 13 3 36
Stative 24 11 14 49 29 4 6 39

* -Ne and zai are imperfective markers in Chinese, equivalent to English

—ing in usage, while -/e is the perfective marker, equivalent to English -
ed or have+-ed (see Li, 1990 for more detailed discussion).

There are immediate problems to conduct chi-square tests on such a set
of data. First, for this set of data, we are mostly interested in the
interaction between the variables in addition to the roles of each individual
variable. Chi-square does not allow us to achieve this goal. Second, even
if we are interested in the independence relationship between the aspect
markers and the verb types, we cannot legitimately run four separate chi-
squares, one for each age group: we are likely to commit Type I Error with
a probability as high as .19 (i.e., I — (.95)* ) even if we are to carry out
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four separate chi-square tests. Finally, the data are inappropriate for chi-
square test because there are many empty cells with zeros. This empty-cell
situation is not uncommon in language data, where by definition there may
be cases that should not have responses (such as the combination between
the progressive marker zai and resultative verb, which is prohibited in the
Chinese grammar).

Table 4 Loglinear Analysis On a Child Language Dataset (from Table 3)

Mode Effect name* df L’ P
(0 (M} 57 1010.00 00
) {A)} 56 1256.92 .00
(3) (V) 55 1024 .46 .00
4) (M) {A} 54 999.20 .00
(5) (VY (M} 53 766.75 .00
6) (V) {A) 52 1013.66 .00
% {Vy M} {A} 50 755.95 .00
(8) {MA} 48 975.78 .00
9) {VM} 45 76.78 .00
(10) {VA} 40 1002.55 .00
(1) {MA} {V} 44 732.52 00
(12) {VM} {A} 42 65.98 01
(13) {VA} M} 38 744.83 .00
(14) {VM} {MA} 36 4256 21
(15) {VA} {MA) 32 721.41 .00
(16) {VM} {VA} 30 54.87 .00
17y {VM} {MA}{VA} 24 15.21 91
(18) {VMA} 0 0.00 1.00

* M = Aspect marker
V = Verb type
A=Age
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Loglinear analysis solves these problems: in addition to its relaxation on
empty cells,’ it is able to handle multiple variables and is thus not subject
to Type I Error in the above manner. Most important, it is ideal for
locating exact patterns of effects of different variables, whether it be the
main effect or the interaction effects. Table 4 presents the results from
loglinear analysis performed on the data in Table 3. The results in the table
were calculated with the SPSS-X HILOGLINEAR program (SPSS Inc,
1988; 1994).

Looking down the column for the p values in Table 4 we can see that
only models (14), (17), and (18) provide an adequate fit to the data
because only these models are above the significance level of .05 (see
earlier discussion). To find out the best model, let us start from the most
complex model and examine backward (i.e., using the backward
elimination procedure). Model (18) is the saturated model, which, by
definition, fits the data perfectly and so is uninteresting. Model (17),
which incorporates all possible association effects among the three
variables, fits nearly perfectly (p = .91), but this model does not give us a
clear picture of which effects are most important since all association
effects and main effects are included in the model. Model (14), which
omits the association effect of verb type by age, also provides an adequate
fit (p = .21), showing that the interaction between verb type and age does
not account for much of the data structure. Among the three models that
provide adequate fit, model (14) is thus selected as the best model since it
provides an adequate fit and at the same time it is also parsimonious in
terms of its employment of effect terms. Model (14) indicates that there
are clear interactions between verb types and aspect markers and between
aspect markers and age, and that these interaction effects (plus the main
effects of verb type, aspect marker, and age) account sufficiently for the
variations in the data.

To determine further which effects are important for the data, we need
to examine not only the models that do provide an adequate fit, but also
those that do not. Note that the key procedure in applying loglinear
analysis is to compare the L’ values of paired models and evaluate the

* Loglinear analysis sets empty cells to structural zeros, that is, with expected

value of zero, and accordingly subtracts one degree of freedom for each of the
cells.
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significance of the difference between the two values. The models to be
compared in a pair are models that are identical except one effect: one
model includes a given effect while the other does not. Let us adopt the
forward selection procedure here to determine which effects are important.
For example, model (4) includes only the main effects of {M} and {A},

model (8) includes the corresponding association effect of {M} by {A}

To see if model (8) fits the data better than model (4), we subtract the L

and the df of model (8) from the corresponding values of model (4) and
evaluate the significance of the difference with the chi-square distribution.
As can be seen, the reduction of L’ from model (4) to (8) is significant,
given the cost of 6 degrees of freedom (x*=(999.20- 975.78) = 23.42, df =
(54-48) = 6, p < .001). Therefore, we conclude that the interaction
between age and aspect markers accounts significantly better than the two
main effects alone. When we compare in the same manner model (5),
which incorporates only the main effect of {V} and {M}, and model (9),
which also includes the association effect of {V} by {M}, we find an even

more significant improvement of fit from (5) to (9) (xz (8) =690, p <.001).

Our analyses indicate that overall, the use of aspect markers by Chinese-
speaking children is differentially associated with different verb types.
Finally, model (10), which includes the association effect of {V} by {A},
does not represent a significant improvement in ﬁt over model (6) which
includes only the main effects of {V} and {A} (X (12) = 11.1, p > .05).
This suggests that in contrast to the other two association effects, the
association of verb type by age does not account for much of the data
variation.

Further comparisons between the simple association models (8) to (10)
and the association plus main effect models (11) to (13) indicate that in all
cases the inclusion of the remaining main effects is significant. However,
model (12) represents only no significant improvement over mode! (9) in
which the main effect of age is not included (xz (3) = 10.8, p > .05), as
compared with models (11) and (13). This shows that given the interaction
between verb types and aspect markers, the differences between different
age groups in the use of aspect markers are not all that great. Put it in a
different way, it means that the association effect of {V} by {M} is by far
the most important effect in the data. As can be seen in the above analysis,
the association between verb type and aspect marker is more important
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than any other two-way association (e.g., verb type by age or aspect
marker by age). Models that do not include the {V} by {M} relationship
simply cannot capture the structure in the data; for example, although
model (15) {VA} {MA} (L’ (32) = 72141, p = .00) incorporates two other
association effects, it does not fit the data any better than the simpler
model (9) (L’ (45) = 76.78, p =.00).

Our discussion in this paper presents only a brief overview of the basic
principles and the use of loglinear analysis for language acquisition studies.
Although the example we examined above involves only three variables,
loglinear analysis can be easily applied to categorical data involving four
or more variables (see the reference list). Loglinear analysis is now
incorporated in a great number of statistical packages, such as SPSS,
BMDP, and SAS, many of which are commercially available. There are
also programs specifically designed for loglinear analysis, such as ECTA
(Everyman’s Contingency Analyzer), GLIM (Generalized Linear
Modeling), and LOGLIN (cf. Gilbert, 1981). Once the user has some basic
knowledge of computerized data analysis and loglinear models, these
specific programs can be easily followed.
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