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Abstract

Two connectionist networks, DISLEX and DevLex-II, were used in this

study to model the acquisition of lexical and grammatical aspect. Both

models use multi-layered self-organizing feature maps, connected by asso-

ciative links trained according to the Hebbian learning rule. Previous em-

pirical research has identified a strong association between lexical aspect

and grammatical aspect in child language, on the basis of which some re-

searchers argue for innate semantic categories or prelinguistic predisposi-

tions. Our simulations indicate that such an association can emerge from

dynamic self-organization and Hebbian learning in connectionist networks,

without the need of a priori assumptions about the structure of innate

knowledge. Our modeling results further attest to the utility of self-

organizing neural networks in the study of language acquisition.

1. Introduction

Aspect is one of the key linguistic categories for expressing temporal con-

cepts in many languages. In contrast to another important category of
temporality, tense, which is often used to locate the relationship between

time of event and time of speech, aspect typically characterizes how a

speaker views the temporal contour of a situation described, for example,

the beginning, continuation, or completion of a situation. Aspect is also

one of the earliest devices acquired by children, and as such the scientific

study of it provides significant insights into not only how young children

acquire temporal notions, but also what psycholinguistic mechanisms

underlie the general acquisition processes.
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1.1. Two kinds of aspect

Linguists generally distinguish between two kinds of aspect, grammatical

aspect and lexical aspect (under various names; see Li and Shirai 2000 for

a review). Grammatical aspect is related to aspectual distinctions which

are often marked explicitly by linguistic devices, such as the inflectional

su‰xes and auxiliaries in English. It is also known as the viewpoint as-
pect (Smith 1997) which refers to a particular viewpoint toward the situa-

tion being talked about. According to Comrie (1976), there are two major

categories of grammatical aspect: imperfective and perfective. Imperfec-

tive aspect presents a situation with an internal point of view, often as on-

going (progressive) or enduring (continuous), whereas perfective aspect

presents a situation with an external perspective, often as completed. In

English, the imperfective-perfective contrast is realized in the di¤erence

between the progressive be V-ing and the past-perfective -ed.1

Lexical aspect, on the other hand, refers to the characteristics inherent

in the temporal meanings of a verb, for example, whether the verb

encodes an inherent end point of a situation, or whether the verb is in-

herently stative (i.e., continuous and homogeneous) or punctual (i.e.,

momentary and instantaneous). Most researchers adopt Vendler’s (1957)

classification as the standard treatment of inherent semantics of verbs,

which involves four categories: activities, accomplishments, achieve-

ments, and states. Activity verbs like walk, run and swim encode situa-
tions as consisting of successive phases over time with no inherent end

point. Accomplishment verbs like build a house also characterize situa-

tions as having successive phases, but unlike activities they encode an

inherent endpoint (e.g., house-building has a terminal point and a result).

Like accomplishments, achievement verbs also encode a natural end-

point, but unlike accomplishments and activities they encode events as

punctual and instantaneous, that is, as having no duration, such as in

fall, recognize a friend and cross the border. Finally, state verbs encode
situations as homogeneous, with no successive phase or endpoints, involv-

ing no dynamicity, such as know, want and love. In addition, on the basis

of whether the verb encodes endpoints, linguists also call activity and

state verbs ‘‘atelic’’ (no endpoint), and accomplishment and achievement

verbs ‘‘telic’’ (with endpoint).

In English, grammatical aspect and lexical aspect often interact with

each other in complex fashions. Uses of the inflectional su‰xes, -ing, -ed

and -s are in many cases constrained. For example, progressive aspect
-ing does not occur often with state verbs; thus while ‘‘John knows the

boy’’ is good, ‘‘John is knowing the boy’’ sounds odd (Smith 1983). There

are also combinatorial constraints between -ing and event verbs; for ex-
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ample, ‘‘The book is falling o¤ the shelf ’’ is odd when used to refer to the

actual falling down, but is good when used to mean a preliminary stage

(i.e., prior to actual falling; Smith 1997). These kinds of constraints may

reflect the intricate relationships between language use and characteristics

of the described event. For example, as pointed out by Brown (1973),

many events with an end result last for such a short period of time that

any description of them is unlikely to occur during the period, such as
the actions of fall, drop, and break. Thus it is rare for speakers to describe

the ‘‘ongoing-ness’’ of such events with -ing but more natural for them to

describe the ‘‘completeness’’ using past-perfective forms.

1.2. Acquisition of aspect in children

The study of grammatical aspect, lexical aspect, and their interactions

has attracted research attention from many perspectives and in many lan-

guages in the last decade (e.g., Klein et al. 2000; Li and Shirai 2000;

Shirai 1998; Shirai and Andersen 1995, to name a few). Accompanying

this interest in aspect is the crosslinguistic study of aspect in child lan-

guage. How do children acquire the two kinds of aspect and their interac-

tions in di¤erent languages? In many acquisition studies researchers have

found a recurring pattern of association between lexical aspect and gram-
matical aspect: children initially tend to restrict tense-aspect morphology

to specific categories of lexical aspect. For example, English-speaking

children initially tend to use progressive marker -ing only with atelic,

activity verbs, whereas past-perfective marker -ed only with telic verbs

(accomplishment and achievements) at an early stage of development

(Harner 1981; McShane and Whittaker 1988; Shirai and Andersen 1995).

This restricted or ‘‘undergeneralized’’ pattern of use has led to much in-

tense debate with respect to various theoretical frameworks (see Li and
Shirai 2000 for review). An early suggestion from Bickerton (1981, 1984)

was that children have innate semantic categories that roughly corre-

spond to the lexical aspect distinctions of verbs (e.g., punctual-

nonpunctual, state-process distinctions), and these categories are biologi-

cally programmed as part of a Language Bioprogram. Bickerton relied

on both data from creole languages and child language acquisition to

support his proposal that children’s acquisition of tense-aspect morphol-

ogy has a biological basis. Subsequent crosslinguistic studies, however,
have provided counter evidence to this hypothesis (e.g., Li and Bower-

man 1998; Mapstone and Harris 1985; Shirai 1994; Shirai and Andersen

1995), and led researchers to propose a variety of input-driven hypotheses
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about how children acquire tense-aspect morphology and lexical seman-

tics of verbs (see Li and Shirai [2000] for a review).

The goal of the current study is not to provide support for one or the

other hypothesis. Rather, our goal here is to give some mechanistic ac-

counts for how empirically observed patterns could emerge out of simple

computational principles. In previous empirical studies (Li and Bower-

man 1998; Li and Shirai 2000), we proposed that the initial lexical-
morphological associations could arise as a result of the learner’s analyses

of the verb-morphology co-occurrence probabilities in the input environ-

ment of the language learner. In parental speech, there are probabilistic

associations between progressive markers and atelic verbs, and between

perfective markers and telic verbs (Shirai and Andersen 1995); children’s

initial undergeneralizations (restricted uses of morphology) might reflect

their analyses of these probabilities. In this study, we specifically simulate

how connectionist networks can analyze these probabilities and arrive at
patterns that resemble children’s patterns of acquisition.

1.3. Modeling the acquisition of aspect with self-organizing neural

networks

One of the first tasks that networks as well as children need to handle is to

arrive at semantic representations of verbs for the acquisition of lexical
aspect. For children, they can go about acquiring semantic representa-

tions in roughly three ways. First, they may analyze the semantic proper-

ties of verbs through a verb’s co-occurrence with situational contexts. For

example, de Lemos (1981) showed how parents intentionally draw in-

fants’ attention to event structures, such as di¤erence between result and

process, through carefully modeled input in parental speech. Yu (2006)

and Yu and Smith (2006) also provided general evidence with respect to

how the child can exploit word-to-world relationships to extract meanings
of nouns and verbs. Second, children may extract semantic representa-

tions through a verb’s co-occurrences with other words (e.g. break typi-

cally occurs with glasses, while tear with pieces of paper). In previous

research, Li et al. (2000) showed how global lexical co-occurrence infor-

mation in sentences can be used by the learner to derive accurate lexical

semantic representations. There is also a large literature on the syntac-

tic bootstrapping of word meanings that is related to this type of co-

occurrence analysis (Gleitman 1990; Naigles 1990). Finally, children may
compute the co-occurrences of particular grammatical morphemes (e.g.,

-ed and -ing) with sets of semantic features that turn up repeatedly across

lexical items (Behrend 1995; Behrend et al. 1995; Maratsos and Chalkley
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1980). While all three ways of semantic representations can be simulated

in connectionist networks, our models presented here focus on the latter

two. In a previous work, Farkas and Li (2002) successfully constructed a

connectionist model called WCD (word co-occurrence detector) to extract

semantic representations, in close resemblance to the second method of

semantic acquisition.

In the last few years Li and colleagues (Li 2003, 2006; Li et al. 2004; Li
et al. 2007; Zhao and Li 2005) have explored self-organizing neural net-

works as candidates of cognitively and neurally plausible models of lan-

guage acquisition. Their model has been applied to the study of a number

of problems, including the acquisition of lexical categories (Li et al.

2004), vocabulary spurt (Li et al. 2007), bilingual lexical processing (Li

and Farkas 2002), and AOA (age of acquisition) e¤ects (Li et al. 2004;

Zhao and Li 2005). In this study, we build on this line of research to ex-

amine the acquisitions of grammatical aspect (-ing, -s and -ed ), in connec-
tion with the acquisition of semantic categories of lexical aspect. In par-

ticular, we attempt to show (1) how a multi-layer self-organizing neural

network model is able to capture the processes of semantic organization

that leads to distinct lexical aspect categories that have been claimed to

be innate or otherwise prelinguistic, and (2) how the model could derive

child-like semantic-morphological associations on the basis of analyzing

patterns in parental input speech based on the CHILDES database (Li

et al. 2000; MacWhinney 2000). Evidence from our study could also
shed light on the mechanisms of lexical and morphological development

in child language in general.

Compared to other developmental connectionist models, most of which

rely on supervised learning algorithms (see models reviewed in Elman

et al. 1996), self-organizing neural networks, especially the so-called self-

organizing maps (SOM), have several important properties that make

them particularly well suited to the study of lexical and morphological ac-

quisition (see Li 2003, 2006 for discussion). First, they belong to the class
of unsupervised learning networks that require no explicit teacher; learn-

ing is achieved by the system’s organization in response to the input. Such

networks provide computationally more relevant models for language

acquisition, given that in real language learning children do not receive

constant feedback about what is incorrect in their speech, or the kind

of error corrections provided by supervised learning algorithms (see Li

2003; MacWhinney 1998, 2001; Shultz 2003 for discussion). Second, self-

organization in these networks allow for the gradual formation of struc-
tures as changes of activity bubbles on 2-D maps, as a result of extracting

an e‰cient representation of the complex statistical regularities inherent

in the high-dimension input space2 (Kohonen 2001). In particular, the
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network organizes information first in large areas of the map and gradu-

ally zeros in on to smaller areas; this zeroing-in is a process from di¤use

to focused patterns, as a function of the network’s continuous adaptation

to the input characteristics. Third, the self-organizing map can fall into

a topography-preserving state, which means nearby areas in the map re-

spond to inputs with similar features. This property allows us to model

the emergence of semantic categories as a gradual process of lexical learn-
ing. Finally, several self-organizing maps can be connected via Hebbian

learning, a well-established biologically plausible learning principle, ac-

cording to which the association strength between two neurons is in-

creased if the neurons are both active at the same time (Hebb 1949).

Strong physiological evidence of Hebbian learning exists in the form of

the so-called long-term potentiation (LTP) in the hippocampus, a very im-

portant area for learning or formation of long-term memory in the brain

(Haykin 1999). Although Hebbian learning itself is not an inherent prop-
erty of the self-organizing algorithm, when incorporated, the SOM model

would have strong implications for language acquisition: it can account

for the process of how the learner establishes relationships between word

forms, lexical semantics, and grammatical morphology, on the basis of

how often they co-occur and how strongly they are co-activated in the

representation.

In sum, models based on the above properties can: (1) allow us to track

the development of the lexicon clearly as an emergent property in the net-
work’s self-organization (from di¤use to focused patterns or from incom-

plete to complete associative links), (2) allow us to model one-to-many or

many-to-many associations between forms and meanings in the develop-

ment of the lexicon and morphology, and (3) provide us with a set of

biologically plausible and psychologically relevant computational princi-

ples to study language acquisition. They are biologically plausible be-

cause the human cerebral cortex can be considered as essentially a self-

organizing map (or multiple maps) with topography-preserving ability
(Kohonen 2001; Spitzer 1999); they are psychologically relevant because

child language acquisition is essentially a self-organizing process (Li

2003; MacWhinney 2001). In fact, a number of such models have already

been developed in recent studies of language processing and acquisition,

such as DISLEX (Miikkulainen 1997), DevLex (Li et al. 2004), DevLex-

II (Li et al. 2007), and SEMANT (Silberman et al. 2007). Building on

these models, our networks discussed below rely on self-organization and

Hebbian learning principles to acquire lexical aspect, grammatical aspect,
and their associations and interactions. We report here two modeling

studies that have been designed to simulate aspect acquisition, based on

the DISLEX model and the DevLex-II model, respectively.3
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2. Method

2.1. Study I: modeling aspect acquisition with DISLEX

2.1.1. A sketch of the DISLEX model. DISLEX, a multiple SOM
model of the lexicon, was first introduced by Miikkulainen (1993, 1997).

In this model, di¤erent self-organizing maps are connected through asso-

ciative links via Hebbian learning. Each map is dedicated to a specific

type of linguistic information (e.g., orthography, phonology, and seman-

tics), and is trained as a standard SOM. A SOM works roughly as follows

(see Kohonen 2001 for details). A two-dimensional topographic map is

constructed for the organization of input representations, where each

node (or ‘‘neuron’’) is a location on the map that has input connections
to receive external stimulus patterns. On the map, a neuron k has a vector
~mmk associated with it to represent the weights of the input connections to

it. At each training step of SOM, an external input pattern (e.g., the pho-

nological or semantic information of a word in our study) is randomly

chosen and presented to all the nodes on the map; this activates many

nodes on the map, according to how similar by chance the input pattern

is to the weight vectors of the nodes, and the node that has the highest

activation is declared the winner (the Best Matching Unit or BMU).
Once a node becomes active in response to a given input, the weight vec-

tors of that node and its neighboring nodes are adjusted, so that they be-

come more similar to the input and the nodes will respond to the same or

similar inputs more strongly the next time. In this way, every time an in-

put is presented, an area of nodes will become activated on the map (the

‘‘activity bubbles’’) and the maximally active nodes are taken to represent

the input. Initially activation occurs in large areas of the map, that is,

large neighborhoods, but gradually learning becomes focused and the
size of the neighborhoods reduces. This process continues until all the in-

puts have found some maximally responding nodes as their BMUs. As a

result of this self-organizing process, the statistical structures implicit in

the input are represented as topographical structures on the 2-D space.

In this new representation, similar inputs will end up activating the same

nodes in nearby regions, yielding meaningful activity bubbles that can be

visualized on the map.

In standard SOM, the identification of winners on the map uses the fol-
lowing rule to update the weights of nodes around a winner or BMU:

ð1Þ ~mmkðt þ 1Þ ¼ ~mmkðtÞ þ aðtÞ � ½~xx � ~mmkðtÞ� for all k a Nc

Here, aðtÞ is the learning rate for the map, which changes with time t. ~xx is

the input stimulus of current training step. Nc indicates the set of nodes in
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the neighborhood of the winner c. ~mmk is the input weight vector of a node

k on the map. If the node k belongs to the nodes in the neighborhood of

the winner c, its weight should be adjusted according to this equation;

otherwise, it remains unchanged.

In DISLEX, an input pattern activates a node or a group of nodes on

one of the input maps, and the resulting activity bubble propagates

through the associative links and causes an activity bubble to form in the
other map. If the direction of the associative propagation is from phonol-

ogy or orthography to semantics, comprehension is modeled; production

is modeled if it goes from semantics to phonology or orthography. The

activation of co-occurring lexical and semantic representations leads to

continuous organization in these maps, and to adaptive formations of

associative connections between the maps. The weights of the associative

links between the features maps are updated according to the Hebbian

learning rule (Hebb 1949), as in (2):

ð2Þ Dwkl ¼ b � aS
k � aD

l

where wkl is the unidirectional associative weight leading from node k in

the source map to node l in the destination map, and aS
k and aD

l are the

associated node activations. b is a constant learning rate. The associative

weight vectors are then normalized according to (3), and normalization is

carried out over all associative links of the source node.

ð3Þ wklðt þ 1Þ ¼ wklðtÞ þ Dwkl

f
P

l ½wklðtÞ þ Dwkl �2g1/2

Using these basic features of the DISLEX model, in this study, we

constructed two self-organizing maps, one for the organization of

phonological input and one for the organization of semantic input. Each

map consisted of 50 � 50 nodes. All simulations were run on a SUN
Ultra workstation, using the DISLEX codes configured by Miikkulainen

(1999).

2.1.2. Input data and representations for DISLEX. To model the role

of linguistic input in children’s acquisition of lexical and grammatical as-

pect, we selected as our input data the parental or caregiver’s speech in

the CHILDES database (MacWhinney 2000). We extracted utterances

produced by parents, caregivers, and experimenters from the CHILDES
database in about half of the English corpus (from Bates to Korman). Al-

though not all of these utterances are child-directed, they form a represen-

tative sample of the speech that children are exposed to (e.g., dinner table
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talks, activities of free plays, and storytelling). A verb type from this cor-

pus was chosen as an input to the network if it occurred in the total pa-

rental or caregivers’ speech for five or more times in a given age period (a

bare verb form and its inflected forms were calculated as di¤erent verb

types). With this criterion we selected a total of 562 words (types) as input

to our network. They were submitted to the network in four stages, ac-

cording to the age groups at which they occurred (see 2.1.3. below for
details)

Many previous connectionist models of language acquisition rely on

the use of artificial input/output representations (e.g., randomly gener-

ated patterns of phonological or semantic representations), or representa-

tions that are constructed ad hoc by the modeler. Models based on such

representations run the risk of modeling developmental patterns that have

little to do with the actual learning task. To make direct contact with

realistic learning, in this study, our model represents input words accord-
ing to their realistic linguistic features, as follows.

To represent the phonology of the verbs, we used a syllable-based tem-

plate coding developed by MacWhinney and Leinbach (1991) (see also Li

and MacWhinney 2002). Instead of a simple phonemic representation,

this representation reflects current auto-segmental approaches to phonol-

ogy, according to which the phonology of a word is made up by combi-

nations of syllables in a metrical grid, and the slots in each grid made up

by bundles of features that correspond to phonemes, C’s (consonants)
and V’s (vowels). The MacWhinney-Leinbach model used 12 C slots and

6 V-slots that allowed for representation of words up to three syllables.

For example, the 18-slot template CCC VV CCC VV CCC VV CCC rep-

resents a full tri-syllabic structure in which each CCCVV is a syllable (the

last CCC represents the consonant endings). Each C is represented by a

set of 10 feature units and each V by a set of 8 feature units. The su‰xes

-ing, -ed, and -s are also represented by these feature units.

Semantic representations to our network were based on the lexical co-
occurrence analyses in the Hyperspace Analogue to Language (HAL)

model (Burgess and Lund 1997). HAL represents word meanings through

multiple lexical co-occurrence constraints in large text corpora. In this

representation, the meaning of a word is determined by the word’s global

lexical co-occurrences in a high-dimensional space: a word is anchored

with reference not only to other words immediately preceding or follow-

ing it, but also to words that are further away from it in a variable co-

occurrence window, with each slot (occurrence of a word) in the window
acting as a constraint dimension to define the meaning of the target word.

Thus, a word is represented as a vector that encodes the entire contextual

history of that word in a high-dimensional space of language use (see Li
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et al. 2000 for application of HAL to children’s lexical acquisition). Here,

we used 100 dimensions to encode each vector.

2.1.3. Task and procedure. Upon training of the network, a phonolog-

ical input representation of the verb was presented to the network, and

simultaneously, the semantic representation of the same input was also

presented to the network. Through self-organization, the network formed

an activity on the phonological map in response to the phonological in-

put, and an activity on the semantic map in response to the semantic in-
put. When an input verb was in its inflectional form, both its bare verb

form and the su‰x -ing -ed, or -s were presented to the network for train-

ing simultaneously. The phonological representations of the su‰xes -ing

-ed, or -s were presented only to the phonological map. Under this situa-

tion, the nodes that corresponded to the su‰x’s phonological representa-

tions would co-activate with those corresponding to the bare verb forms

on the phonological map, and with those corresponding to the verbs on

the semantic map. As the network received input and continued to self-
organize, it simultaneously formed associations through Hebbian learn-

ing between the two maps for all the active units that responded to the

input. The network’s task was to create new representations in the cor-

responding maps for all input words and to be able to map the seman-

tic properties of a verb to its phonological shape and its morphological

pattern.

To observe e¤ects of the interaction between lexical and grammatical

aspect in the parental input on the network’s learning and representation,
we designed four stages to train the network, according to the di¤erent

age groups of our input data. At each stage the network was trained for

200 epochs; that is, each verb type (a bare verb or a verb with su‰x) was

presented to the network 200 times.

1. Input Age 1;6 (13–18 months). Although parental/caregivers data
in the CHILDES database are available from an age when the

child is 6 months old, there are relatively few morphological mark-

ings prior to age one. A total of 186 verb types fit our selection cri-

teria for the period when the child is between 13 and 18 months

old, out of which 34 (18%) occurred with -ing, 9 (5%) with regular

past form -ed,4 9 (5%) with -s, and the remaining verbs are verb

stems in corpus without su‰xes.

2. Input Age 2;0 (19–24 months). 324 verb types were selected, which
include new verbs as well as verbs from the previous stage, among

which 76 (23%) occurred with -ing, 23 (7%) with -ed, and 24 (7%)

with -s.
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3. Input Age 2;6 (25–30 months). 419 verb types were selected,

among which 82 (20%) occurred with -ing, 35 (8%) with -ed, and

31 (7%) with -s.

4. Input Age 3 (31–36 months). 562 verb types were selected, among

which 123 (22%) occurred with -ing, 70 (12%) with -ed, and 61

(11%) with -s.

These stages ensure an incremental growth of vocabulary and a coarse

frequency coding: a verb or a su‰x was presented to the network for the

number of times it occurred across the four stages. Thus, during training,

if a verb occurred at two di¤erent stages, the network would receive the
verb as input twice, on both the phonological map and the semantic

map; if it occurred at three stages, the network would receive it three

times, and so on. For example, if a verb talk occurred with su‰x -ing at

stage 2, 3 and 4, but not at stage 1, then at the end the network would

receive three times the phonological representation of talk, that of -ing,

and the semantic representation of talk. In this way, words that occurred

earlier would have higher frequency as the input to the network. In es-

sence, this procedure modeled a coarse frequency of the verb-morphology
association, even though the frequency variable was not explicitly manip-

ulated in our simulations. The learning parameter (a) and the neighbor-

hood size (Nc) systematically varied in our simulations, with a varying

from 0.1 to 0.0 at each stage of training. Nc started large to cover the en-

tire map and decreased to 1 at the end of each stage. At the beginning of

each stage, Nc was slightly increased relative to that at the end epoch of

the previous stage, to accommodate the increased number of input verbs

at the new stage.

2.2. Study II: modeling aspect acquisition with DevLex-II

2.2.1. A sketch of DevLex-II. DevLex-II is a new multiple self-

organizing neural network for modeling early lexical acquisition. It is

based on and adapted from the DevLex model (Farkas and Li 2002; Li

et al. 2004). It has been developed to account for some empirical phenom-

ena in early lexical acquisition, such as ‘‘vocabulary spurt’’ and early

word production errors (Zhao and Li 2005; Li et al. 2007). The basic

structure of DevLex-II is similar to that of DISLEX and DevLex,

with some di¤erences noted below. Figure 1 shows the architecture of
DevLex-II.

DevLex-II uses three layers of SOMs to process three basic levels

of linguistic information: phonological content, semantic content, and
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output phonemic sequence. The addition of the phonemic sequence layer

represents a step forward from the original DevLex model, and is inspired

by models of word learning based on temporal sequence acquisition (e.g.,

Gupta and MacWhinney 1997). It is designed to simulate the challenge

to young children when they need to develop better articulatory control
of the phonemic sequences of words. Just as the learning of auditory

sequences requires the mediation of memory systems, the learning of

articulatory sequences requires support from the rehearsal in phono-

logical working memory (Gathercole and Baddeley 1993; Gupta and

MacWhinney 1997).

In our implementation of this idea, the activation pattern correspond-

ing to the phonemic sequence information of a word is formed according

to the algorithms of SARDNET (James and Miikkulainen 1995), which
works slightly di¤erently from the standard SOM algorithm. At each

training step, phonemes are input into the sequence map one by one, ac-

cording their order of occurrence in the word. The winning unit of a pho-

neme is found and the responses of nodes in its neighborhood are ad-

justed as shown in Equation 1. Once a unit is designated as the winner,

Figure 1. The architecture of DevLex-II model. Each of the three self-organizing maps

(SOM) takes input from the lexicon and organizes phonology, semantics, and phonemic se-

quence information of the vocabulary, respectively. The number of nodes in each map is in-

dicated in parentheses. The dimension of input vector for each map is indicated by ‘d ¼’ in

parentheses next to the input representation symbols. The maps are connected via associative

links updated by Hebbian learning.
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it becomes ineligible to respond to the subsequent inputs in the sequence.

In this way, same phonemes in di¤erent locations of a word will be

mapped to di¤erent (but adjacent) nodes on the map as an result of the

network’s topography-preserving ability. When the output status of

the current winner and its neighbors is adjusted according to Equation 1,

the activation levels of the winners responding to phonemes before the

current phoneme will be adjusted by a number 'd , where ' is a constant
and d is the distance between the location of the current phoneme and the

previous phoneme that occurred in the word. This adjustment is intended

to model the e¤ect of phonological short-term memory during the learn-

ing of articulatory sequences; the activation of the current phoneme could

be accompanied by some rehearsal of previous phonemes due to phono-

logical memory, which deepens the network’s or the child’s impression of

previous phonemes. Further details of DevLex-II are discussed in Li et al.

(2007).
As in Study 1, the associative links between any two layers of maps

are trained by Hebbian learning (see Equation [2]), such that the activa-

tion of a word on the form map can evoke the activation of a word on

the meaning map via form-to-meaning links, thereby modeling word

comprehension, and the activation of word meaning can cause the forma-

tion of word sequence via meaning-to-sequence links, thereby modeling

word production. In DevLex-II, we say that a word has been learned

in comprehension, when a node in the destination map (word meaning
map) becomes consistently activated as the ‘‘winner’’ for a given input

from the source map (word form map). We say that a word has been

learned in production, when several nodes in the word sequence map

become activated sequentially as winners that represent the word’s

phonemes.

2.2.2. Input representations for DevLex-II. As with DevLex, we used

the PatPho system to construct the phonological patterns for word forms.
PatPho is a generic phonological pattern generator for neural networks,

which fits every word (up to tri-syllables) onto a template according

to its vowel-consonant structure (Li and MacWhinney 2002). PatPho

uses the same phonological method as in MacWhinney and Leinbach

(1991) (see discussion in Section 2.1.2), but relies on articulatory fea-

tures of phonemes (Ladefoged 1982) to represent the phonemes, Cs and

Vs, and a phoneme-to-feature conversion process produces real-value or

binary feature vectors for any word up to three syllables. In short,
Patpho can code each input word in our simulation by the template

CCCVVCCCVVCCCVVCCC, and then replace each phoneme with its

appropriate representation using real-value or binary numbers.5 For
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example, a verb pick with its progressive marker -ing would be encoded as

pCCIVkCCIVÐCCVVCCC, and is represented as the following vector:

/pIkIÐ/: 1 0.45 0.733 0 0 0 0 0 0 0.1 0.1 0.185 0 0 0 1 0.921

0.733 0 0 0 0 0 0 0.1 0.1 0.185 0 0 0 0.75 0.921 0.644 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

In this representation, the first three units [1 0.45 0.733] indicate the pho-
netic features of phoneme /p/, the second and third sets of three units in-

dicate that no more consonants follow /p/ in this word (hence zeros).

The representation is left-justified, which means that in a given syllable,

the representation of the phoneme is pushed toward the left side of the

template (rather than the right side).

On the output sequence map, the phonemes of a word are processed

one by one, so we need representations for each of the 38 English pho-

nemes. Using the method of PatPho, we can represent these phonemes
by three-dimensional real-value vectors. In particular, in the vector, the

first dimension indicates whether the phoneme is a vowel or a consonant,

and in the case of a consonant, whether it is voiced or voiceless. The sec-

ond dimension indicates the position for vowels and manner of articula-

tion for consonants, and the third dimension indicates the sonority for

vowels and place of articulation for consonants (see Li and MacWhinney

2002).

With respect to the semantic representation of the input, in Study 1
we used representations based on the HAL method (Burgess and Lund,

1997). In Study 2, we used a special recurrent network called WCD

(word co-occurrence detector) to generate HAL-like vectors. The main

di¤erence between HAL and WCD is that the former generates station-

ary vectors while the latter allows us to generate vectors that dynamically

change with the learning history: lexical representations enrich over time

as a function of learning the number of co-occurring words in the input

sentences. WCD allows us to build semantic representations on the fly,
incorporating more and more di¤erent words in a context, until the size

of the lexicon reaches a given target level. Metaphorically, this learning

scenario can be compared to filling the holes in a Swiss cheese: initially

there may be more holes than cheese (shallow representations) but the

holes get filled up quickly as the co-occurrence context expands with

more words being acquired (rich representations).

Briefly, WCD works as follows (see Farkas and Li 2001, 2002; Li et al.

2004 for details). It reads through a stream of input sentences one word at
a time, and learns the transitional probabilities between words which it

represents as a matrix of weights. Given a total lexicon sized N, all word

co-occurrences can be represented by an N � N contingency table, where
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the representation for the ith word is formed by concatenation of ith col-

umn vector and ith row vector in the table. Hence, the two vectors corre-

spond to the left and the right context, respectively; WCD transforms

these probabilities into normalized vector representations for word mean-

ings, which in turn are read by self-organizing maps (after Random Map-

ping, a procedure to achieve reduced uniform dimension of vectors; see

Ritter and Kohonen 1989). As in study 1, di¤erent inflectional forms of
the same verb are considered as di¤erent items, and therefore WCD will

derive di¤erent (but also similar) representations for them. For example,

playing and played will be represented distinctly, but since the co-

occurrence contexts for these words will overlap significantly (e.g., the

co-occurring words tend to be ball, toys, etc.), the representations for

them will also tend to be similar. An example of a semantic representa-

tion generated by WCD is shown below (only part of the vector is shown,

the full vector contains 2002 units). Here, every two units of the vector
represent the normalized co-occurrence possibility between the verb pick-

ing and another word in the lexicon. The odd unit represents the possibil-

ity that picking happens before a given word, and the even unit represents

the possibility that picking follows a given word in the context.

Picking: 0.000000 0.000000 0.006004 0.007211

0.003548 0.017577 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.001202 0.000000 0.000300

0.000000 0.000000 0.000000 0.000000 . . . . . .

As in Study 1, DevLex-II also uses as its input data the parental or care-

givers’ speech in the CHILDES database (MacWhinney 2000). Here we

extracted all parental or caregivers’ utterances from the complete English

database (i.e., the available database in 2002). Due to the expanded size

of the corpus (about 2.6 million word tokens), the criterion of verb selec-

tion was also modified: a verb type was chosen as input if it occurred
in the parental speech for fifty or more times in a given age period. As

in Study 1, the verbs were divided into four stages, according to the

age groups (Age 1;6, 2:0, 2;6, 3;0) at which they occurred. To increase

the accuracy of WCD representations, we also analyzed the selected

verbs along with the nouns, adjectives, and close-class words from the

MacArthur-Bates Communicative Development Inventories (the CDI,

Toddler’s List; Dale and Fenson 1996; homographs and homophones,

word phrases, and onomatopoeias were excluded). These CDI words
along with the verbs that fit our selection criterion (a total of 1001 words)

served as the input contexts of WCD. We computed the semantic repre-

sentations of the vocabulary at each of the four growth stages, resulting in
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4 di¤erent data sets with increasing complexity in semantic representa-

tion. The four growth stages had the following vocabulary composition:

1. Input Age 1;6 (13–18 months): a total of 62 verb types fit our selec-

tion criteria for the period before age 1;6; 35 of these verbs oc-

curred with -ing, 13 with -ed, 14 with -s.

2. Input Age 2;0 (19–24 months): 100 verb types were selected, which

included the new words as well as words from the previous stage;

58 occurred with -ing, 19 with -ed, 23 with -s.

3. Input Age 2;6 (25–30 months): 154 verb types were selected,

among which 86 occurred with -ing, 32 with -ed, 36 with -s.

4. Input Age 3 (31–36 months): A total of 184 verb types were se-

lected, out of which 97 verbs occurred with -ing, 41 with -ed, and

46 with -s. This stage included all verbs that occurred in previous

stages plus new ones.6

2.2.3. Training parameters. The size of the network was 30 � 25 nodes

for the phonological map and the semantic map, and 15 � 10 nodes for

the phonemic map. These numbers were chosen to be large enough to dis-
criminate among the words and phonemes in the lexicon, while keeping

the computation of the network tractable. The learning rate aðtÞ and

neighborhood radius (Nc) were set similarly as in Study 1, where they

changed according to di¤erent age periods. At Stage 1 (Age 1;6), for

each layer, the learning rate a started from 0.4 (a_start), gradually de-

creased to 0.1 (a_end ); the radius of a winner’s neighborhood on the

phonological or the semantic layer (Nc_som) gradually decreased from

13 to 0, and that on the phonemic output layer (Nc_sard ) gradually de-
creased from 5 to 0. At Stage 2 (Age 2;0), the parameters were set to 0.4

(a_start), 0.1 (a_end ), 8 (Nc_som), 5 (Nc_sard ); at Stage 3 (Age 2;6),

these parameters were 0.2, 0.05, 5, 3, respectively, and at Stage 4 (Age

3;0), they were 0.1, 0.05, 3, 3 respectively. The learning rate b for associa-

tive links between levels was kept constant at 0.1 during the entire train-

ing process. For each stage, the network was trained for 50 epochs, which

means that each verb in a given stage was presented to each map 50

times.

3. Results and discussion

In this section we will focus on three levels of analysis for the two models’

simulation results: the role of input, the emergence of structured semantic

representations, and the role of Hebbian learning.
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3.1. Role of input

An important rationale behind our simulations is for us to understand the

role of linguistic input in guiding children’s acquisition of lexical and

grammatical aspect. Earlier we have emphasized the relationship between

patterns observed in children’s speech and those in adult speech with re-

spect to the interaction between lexical aspect and grammatical aspect.
But a simple correlation between children’s and adult’s patterns tells us

only that the child is sensitive to the linguistic environment and is able

to incorporate information from that environment into his or her own

speech. It does not tell us how the child actually does this, or what mech-

anisms allow the child to do this. Thus we wanted to test whether connec-

tionist networks, endowed with self-organization and Hebbian learning

principles, are able to display learning patterns as the child does. Our net-

works receive phonological and semantic representations of input words
from actual adult speech along with phonemic sequence (morphology) in-

formation of these words. If this kind of network is able to produce pat-

terns like those we found in children’s speech, on the basis of learning of

the input, we can then conclude that self-organization and Hebbian learn-

ing provide the necessary kinds of mechanisms that drive the formation of

patterns in children’s acquisition. In this way, our modeling enterprise

sheds light on the mechanisms that underlie the learning process.

Tables 1 and 2 provide summaries of the major patterns from the DIS-
LEX and DevLex-II models, respectively, according to the tense-aspect

Table 1. Percentage of use of tense-aspect su‰xes with di¤erent verb types across input

age groups in DISLEX’s production and in parental input data (including verbs with multiple

su‰xes)

VERBS TENSE-ASPECT SUFFIXES

Age 1;6 Age 2;0 Age 2;6 Age 3;0

-ing -ed -s -ing -ed -s -ing -ed -s -ing -ed -s

Network

production

Activity 72 16 0 62 29 6 64 40 44 52 38 30

Telic 28 75 0 32 66 31 32 60 12 43 53 26

Stative 0 8 100 0 4 63 0 0 44 5 9 44

Parental

Input data

Activity 65 22 33 66 30 29 62 40 42 60 40 43

Telic 32 77 33 32 65 25 32 54 26 33 44 24

Stative 3 0 33 3 4 46 6 6 32 7 16 33
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su‰xes the model produced at di¤erent learning stages. The two tables

present the results of the networks’ production of three su‰xes, -ing, -ed,

and -s, with three types of verbs, activity, telic and stative.7 The results

were based on the analysis of the networks’ production ability; that is,

how semantic representations induce activations on corresponding feature

maps (phonological map in DISLEX and output phonemic sequence

map in DevLex-II) through associative pathways. The analysis was done
by inspecting the nodes that each verb on the semantic map activated,

after the network had been trained for a specified number of epochs at

each stage (200 epochs for DISLEX and 50 epochs for DevLex-II).

In particular, the testing of DISLEX’s production ability of target

verbs can be described as follows. At the end of each training stage, verb

types in the lexicon of the current stage are presented to the semantic map

one by one. For a verb type, its best matching unit or BMU on the se-

mantic map is found, and in turn this node propagates its activation to
the phonological map through the associative links. As a result of this

propagation, some nodes on the phonological map become activated,

and the network checks if the nodes were BMUs for the phonological rep-

resentations of corresponding verb stems and su‰xes; if they are, we say

that the verb has been correctly produced. For example, when the verb

kicking is shown to semantic map, two units on the phonological map

may become activated, and if the two nodes are the BMUs for the phono-

logical representations of kick and -ing respectively, we say that the verb
kicking has been correctly produced by DISLEX. Running the test over

Table 2. Percentage of use of tense-aspect su‰xes with di¤erent verb types across input age

groups in DevLex-II’s production and in parental input data (including verbs with multiple

su‰xes)

VERBS TENSE-ASPECT SUFFIXES

Age 1;6 Age 2;0 Age 2;6 Age 3;0

-ing -ed -s -ing -ed -s -ing -ed -s -ing -ed -s

Network

production

Activity 73 0 29 69 27 33 61 24 35 62 30 37

Telic 27 75 14 21 53 28 32 62 27 31 62 26

Stative 0 25 57 10 20 39 7 14 38 7 8 37

Parental

Input data

Activity 63 23 29 62 26 26 63 22 33 60 29 35

Telic 31 62 29 31 58 26 29 66 25 32 59 24

Stative 6 15 43 7 16 48 8 12 42 8 12 41
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the entire lexicon, we can calculate how many verbs in each su‰x cate-

gory or aspect category are correctly produced, as the results shown in

Table 1.

The testing of DevLex-II’s word production ability is similar to that of

DISLEX, with a slight modification. This time, the winner node on the

semantic map propagates its activation to the output sequence map rather

than the phonological map, and several nodes in the sequence map be-
come activated sequentially as winners that represent the word’s pho-

nemes. Then the network checks to see if every node is the BMU of a

unique phoneme, according to the Euclidean distance between its input

weight vector and the feature representation of every phoneme. If it is,

the phoneme closest in Euclidean distance to the current winner becomes

its retrieved phoneme; if it is not, the pronunciation of this phoneme has

failed. Finally, the pattern of the retrieved phoneme sequence is treated as

the output of word production. When the retrieved phonemic sequence
matches up with the actual word’s phonemic sequence, we say that the

word has been correctly produced. For example, if the word kicking is

shown to the semantic map, correct production occurs only when the con-

secutively activated nodes on the output phonemic map are the BMUs for

/k/ /I/ /k/ /I/ /Ð/ in a sequence.

The results of the two tables are quite similar and highly consistent

with empirical patterns observed in early child language: the use of imper-

fective aspect is closely associated with activity verbs that indicate ongo-
ing process, while the use of perfective aspect is closely associated with

telic verbs that indicate actions with endpoints or end results. In particu-

lar, in early child English, the progressive marker -ing is highly restricted

to activity verbs, the perfective/past marker -ed restricted to telic verbs,

and the third person singular -s restricted to stative verbs (Bloom et al.

1980; Brown 1973; Clark 1996; Shirai 1991). Our networks, having taken

in input patterns based on realistic parental speech, behaved in the same

way as children do. For example, at Input Age 1;6, the networks pro-
duced -ing predominantly with activity verbs (72% for simulations based

on DISLEX, 73% for those based on DevLex-II), -ed overwhelmingly

with telic verbs (75% for both simulations), and -s with stative verbs

(100% for DISLEX, 57% for DevLex-II; -s with stative verbs combina-

tions were generally rare — 5–7 cases in our simulations — so the per-

centage discrepancy is not too meaningful). Such associations were strong

at all four stages (especially for -ing and -ed ), but they tended to become

weaker over time.
Interestingly, when we analyzed the actual input to our networks

(based on parental speech), we found similar patterns. Tables 1 and 2

also presented the percentages of the use of su‰xes with di¤erent verb
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types in the input data for DISLEX and DevLex-II, respectively. An

analysis of these tables indicate that in the input data there are also clear

associations between -ing and activity verbs, -ed and telic verbs, and that

these associations are strong throughout the four stages, as also found

previously by Shirai (1991) and Olsen et al. (1998). The association be-

tween -s and stative verbs is not so obvious, especially in the input data

for DISLEX. However, when we examined the larger corpus which was
used for DevLex-II, we found that such association also exists. The de-

gree to which the networks’ production matches up with the input pat-

terns indicates that the two networks in our study were able to learn on

the basis of the information of the co-occurrences between lexical aspect

(verb types) and grammatical aspect (verb morphology). This learning

ability was due to the networks’ use of Hebbian associative learning in

computing if the semantic, phonological, and phonemic properties of a

verb co-occur and how often they do so.
Note that in Tables 1 and 2, the patterns of the parental input and the

network productions are consistent and similar, but not identical. It shows

that the two networks’ productions were not simply verbatim mimics of

what’s in the input by recording each individual word and su‰x and their

co-occurrence. This is important and shows that our networks have their

own productive control of the relevant linguistic information. Our results

indicate that the associations between verb types and su‰xes are stronger

in the networks’ productions than they are in the input to the networks
(at least for the early training stages). It shows that the two networks,

like children, behave more restrictively than what is in the input with re-

spect to the correlations between lexical aspect and grammatical aspect.

To see the data more clearly, we illustrate the patterns with Figure 2 to

show the percentages of the use of su‰xes with di¤erent verb categories

in network’s productions (Figure 2a) and in parental input data (Figure

2b) for DevLex-II at Input Age 1;6. Comparing Figures 2a and 2b, we

can see that the network’s production patterns are consistent with pat-
terns in the parental input data, but the network has more restricted use

of the su‰xes.

3.2. Emergence of structured semantic representations

Elsewhere we have proposed an account of semantic development as an

emergent process in which semantic features are connected in a system
to support lexical categories, like in the formation of semantic crypto-

types (Li and MacWhinney 1996; Li 2003; Li et al. 2004; Hernandez et

al. 2005; see also Rogers and McClelland 2004 for similar discussion).
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The basic idea is that a given verb may be represented with multiple lin-

guistic features, and the features themselves often co-occur and overlap in

di¤erent verbs. For example, the verb screw may be viewed as having
both a meaning of circular movement and a meaning of binding or lock-

ing, and the verb zip may be viewed as sharing both the ‘‘binding/

locking’’ meaning and the ‘‘covering’’ meaning. Moreover, both screw

and zip involve hand movements. Features may also vary in the strength

with which they are represented in di¤erent verbs. For example, the verb

wrap may be viewed as having the covering meaning. However, in some

cases, the action of wrapping may also involve circular movements. Chil-

dren may acquire such complex feature-to-verb relationships through sta-
tistical analyses of the three kinds of co-occurrences as discussed earlier

(co-occurrences of verbs with situational contexts, with other words, and

co-occurrences of particular grammatical morphemes with semantic fea-

tures), leading to feature-based organization of verb categories. In the

simulations here, we provided our networks with verb that are repre-

sented with multiple semantic features (lexical co-occurrence constraints,

extracted by HAL or WCD), and we wanted to see how categories of lex-

ical aspect could emerge from the self-organizing learning process.
As discussed earlier, a particularly useful property of self-organizing

feature maps is that the statistical structures in the representations can

be clearly visualized as activity bubbles or patterns of activity on a two

Figure 2. Percentages of the use of su‰xes with di¤erent verb types at Input Age 1;6 in (a)

network production in DevLex-II, and (b) parental input data. Data are based on Table 2.
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dimensional map in a topography-preserving structure. Given that both

DISLEX and DevLex-II represented semantic information from the

high-dimensional space of verb usage in parental input, we hypothesize

that verbs with similar aspectual properties should cluster together on

the feature map. Figure 3 present a snapshot of DevLex-II’s self-

organization of the semantic representations of verbs (with su‰xes) at

the end of the learning process (i.e., Stage 4, Input Age 3;0).
An examination of this map shows that the network has clearly devel-

oped structured semantic representations that correspond to di¤erent lex-

ical aspect categories. It formed clear clusters of verbs by mapping verbs

with similar combination of semantic features onto nearby regions of the

map, and several interesting observations can be made: (1) The most ob-

vious structure of the map is that the words can be roughly divided into

three main clusters according to the su‰x that a verb stem takes, -ing,

-ed, or -s (see Figure 3). (2) Within each area, there are also groups that
correspond to categories of lexical aspect such as telic verbs, activity

verbs, and stative verbs. For example, towards the lower left-hand corner

of the larger part of -s area (the pale gray area), stative verbs, like loves,

knows, likes, wants, and needs are mapped to the same region. Another

example can be found in the -ing area (the area without shading): al-

though most verbs clustered in this area are activity verbs such as work-

ing, sitting, crawling, walking, sleeping, etc., there is also a cluster of telic

verbs (at the middle-to-lower portion of the map) such as wiping, fixing,
hitting, putting, cutting, throwing, making, and getting. (3) The distribu-

tion of lexical aspect is closely related to the distribution of grammatical

aspect. Not only it is the case that the -ed area contained mostly telic

verbs and the -ing area mostly activity verbs, but also telic verbs that

take -ing were closer to the -ed area (e.g., going, jumping, messing, picking

and cleaning, all bordering the -ed area). (4) Verbs with the same stem but

di¤erent su‰xes are also often mapped to regions not far away from one

another, for example, fixing and fixed, pushing and pushed, turns and
turned at the middle area of the map, and playing and played at the lower

right corner of the map.

The emergence of structured semantic representations on our model

can also be verified by a simple method called k-nearest neighbor (k-

NN) algorithm (Duda et al. 2000). As a classical method in the field of

pattern recognition for classifying objects into di¤erent classes, the basic

idea of k-NN is to predict the class of a point in a dataset according to

the most frequent class label of its k nearest neighbors. Implementing
this method in our semantic map (see also Li et al. 2004), we can evaluate

if a verb in our lexicon was mapped to a node close in Euclidean distance

to other verbs belonging to the same class. This allows us to have a rough
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Figure 3. Emergent representations in the semantic map of DevLex-II after Input Age 3;0. Di¤erently shaded re-

gions indicate di¤erent aspect categories corresponding to di¤erent su‰xes -ed, -ing, and -s. Within each category,

verbs with the same lexical aspect are often grouped together.
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idea of the overall compactness of di¤erent lexical classes. Here, we con-

ducted a 5-NN analysis of verb representations on the semantic map ac-

cording to the su‰x a verb stem takes, -ing, -ed, or -s. As shown in Figure

4a, the semantic map has developed clear clusters for di¤erent su‰xes:
for the category of -ing, the classification rate is about 92%, which means

that 92 percents of verbs su‰xed with -ing are located within a nearest

neighborhood according to k-NN; for the categories of -s and -ed, the

classification rates are 88% and 60%, respectively. We also conducted a

5-NN analysis of the verbs according to their lexical aspect properties: as

shown in Figure 4b, the classification rates for activity verbs, telic verbs,

and stative verbs are 61%, 41%, and 34%, respectively. The relatively low

classification rates of the verb categories, compared with those of su‰x
categories, indicate that the organization of verb meanings according to

lexical aspect is subordinate to the organization of verb su‰xes on the

map. In general, these results from the 5-NN analysis are consistent with

our visual analyses of the semantic maps.

These observations lead us to conclude that the map has formed struc-

tured representations for grammatical aspect markers, such as -ed, -ing,

Figure 4. Classification rates calculated by a 5-NN classifier according to lexical and gram-

matical representations of the verbs on the semantic map of DevLex-II. Classifications are

based on: (a) the su‰x that a verb stem takes: -ing, -ed, and -s; (b) the lexical aspect of the

verb: activity, telic, and stative. The error bars indicate the standard deviations based on 5

trials.
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-s, and that the interaction between grammatical aspect and lexical aspect

is reflected in the correlation between grammatical morphology and verb

types, and in the categories of lexical aspect such as activity, telic, and

stative. Of course, the network’s representation structure on the semantic

map is still not perfect, due to the complexity of semantic features of

verbs and the di‰culty in expressing the complex information from the

higher dimensional inputs on the two dimensional map. In fact, the self-
organization process can be considered as one that extracts the most

important components of information from a dataset and expresses the

outcome in compressed format, such as in Principal Component Analysis

(PCA). During this process as the original information in a high-

dimensional space is projected to a two dimensional space, some loss of

information is inevitable, which explains why the two clusters of -s words

never group together on the map and why not all verbs with the same

stem are mapped together.
Finally, in Figure 5, we present sketches of the lexical aspect categories

as they emerged on the semantic map at each training stage (from age 1;6

through age 3;0). These snapshots from Study 2 (similarly in Study 1; see

Li and Shirai 2000) show us clearly the development of structures corre-

sponding to di¤erent lexical categories on the map, and how they were

gradually constructed based on linguistic input without a priori structure.

At early stages of training, the structure of the map was relatively simple

and easy to change, due to limited linguistic input at these stages. The
overall representation was sparse, and the network was still in an unstable

state. As new words were added into the lexicon, the semantic representa-

tion evolved into a more complex structure with stable basis. We can see

that after Stage 2, the basic clusters of the map became consolidated; new

words could not significantly change those distributions, but could only

be added to the regions established by other words that shared similar

features. For example, comparing the upper right corner of the map at

the end of training stages 3 and 4, we can see that newly acquired words
looks and sounds were filled into the area near the words feels and tastes.

The emergence and organization of categories on the semantic map

could also be explicitly monitored by a map reorganization measure as

shown in Figure 6 (see Li et al. 2004 for a description of the method). In

particular, for any pair of two adjacent stages (e.g. stage of Age 2;0 and

Age 2;6), we evaluated map reorganization as the Euclidean distance of

the same word in the two maps, averaged over all words currently present

in the map. For example, in the two maps for the stage of Age 2;0 (with
100 verb types) and the stage of Age 2;6 (with 154 verb types), we com-

pared only the 100 verbs that were common to both maps. Results of this

procedure, as shown in Figure 6, indicate that the map underwent signif-
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Figure 5. Development of basic structure on the semantic layer of DevLex-II across the four stages. (a), (b), (c),

and (d) indicate Input Ages 1;6, 2;0, 2;6, and 3;0, respectively.
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icant reorganization at initial stages of development, but reorganization

gradually disappeared toward the later stages. The average amount of
word shifts early on was large, but became smaller over time. Thus, the

map’s ability to radically restructure semantic representation decreased

as the basic structure of meaning became consolidated, and this explains

why later learned words could only be simply added to the existing struc-

ture of the network, as shown in Figure 5.

The results from our modeling o¤er a new way of thinking about the

representation of lexical aspect and its interaction with grammatical as-

pect. Verbs in a lexical aspect category form complex relationships, in
that they vary in (1) how many linguistic features are relevant to the cat-

egory, (2) how strongly each feature is activated in the representation of

the category, and (3) how features overlap with each other across cate-

gory members. For example, spill may be viewed as indicating both a

punctual and a resultative meaning; close may involve both a change of

state and a completive meaning; and the feature ‘‘punctual’’ may be rep-

resented more strongly in jump than in fall: in a natural setting a single

jump occurs instantaneously, whereas falling need not (e.g., we could still
say that a leaf fell from a tree even if it drifted down slowly). For exam-

ple, in Figure 3, we can find that the word jump, with its progressive

Figure 6. Semantic maps’ reorganization as a function of time (training stages), computed

as the average amount of word shifts in the map’s underlying grid. Each map was compared

with its predecessor at the previous stage (the index of x-axis refers to the successor stage),

by comparing the positions of the words common to both maps. The results are based on 5

trials.
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marker -ing, is much closer than falling to the -ed area.8 With varying

degrees of connections from semantic features to verb forms, verbs can

form clusters or categories that di¤er overall in lexical aspect. Traditional

analytical methods from linguistics and psycholinguistics are much less

e¤ective, if not impossible, in dealing with these complex semantic rela-

tionships. By contrast, connectionist models that rely on distributed fea-

ture representations and nonlinear learning are ideally suited to account-
ing for the properties of feature overlapping and weighted feature

composition. DISLEX and Devlex-II models that we discuss here provide

clear examples of how we may solve semantic problems via weighted fea-

ture composition (see also Li and MacWhinney 1996; Li 2003, 2006; Li et

al. 2004).

3.3. Role of Hebbian learning

The above results suggest that the learning of grammatical su‰xes is not

simply the learning of a rule such as adding -ing or -ed to a verb to mark

the progressive aspect or the perfective aspect, but the accumulation of

associative strengths that hold between a particular su‰x and a complex

set of semantic features distributed across verb forms (which support the

emergence of a lexical aspect category). This learning process can be best

described as a statistical, probabilistic process in which the learner implic-
itly tallies and registers the frequency of co-occurrences (strengthening

what goes with what) and co-occurrence constraints (inhibiting what

does not go with what) among the semantic features, lexical forms, and

tense-aspect su‰xes.

How do our networks accomplish this learning? The co-occurrence-

and-constraint process is modeled in our networks by Hebbian learning

of the associative connections between forms and meanings. For example,

in DevLex-II, the phonological, semantic, and phonemic sequence repre-
sentations of a verb are co-activated in three separate feature maps in our

network, along with the corresponding su‰xes with which the verb co-

occurs in the input. Hebbian learning, according to which the associative

strength is a function of the degree of co-activation of the two items

in question, determines how strongly the connections form between the

form, the meaning, and the su‰x at any given point during the learning

process.

Along with the self-organization of forms, meanings and morphologies
on the corresponding feature maps, Hebbian learning provides the net-

work with focused pathways from forms to meanings or from meanings

to forms (including the su‰xes). When concentrated patterns of activity

1102 X. Zhao and P. Li



have formed on the feature maps and on their associative connections,

the network can readily ‘‘comprehend’’ new input (e.g., from phonologi-

cal form to meaning) or ‘‘produce’’ the output (e.g., from meaning to

phonemic sequence). This comprehension or production process can be a

quick mapping, especially when the new input is su‰ciently similar to

members of an existing cluster and falls within the area of that cluster.

For example, on the semantic map, most activity verbs are grouped to-
gether in the area corresponding to progressive aspect marker -ing, and

the strong associative pathways are established between these verbs and

the su‰x -ing on the phonemic sequence map; so when a new activity

verb is sent into the network, it is highly likely to be mapped to the su‰x

-ing, using the existing, learned pathway between the feature maps. In

contrast, non-prototypical associations (e.g., between stative verbs and

-ing or -ed ) have formed much weaker associative pathways because

such associations occur only infrequently in the input. Thus, a new stative
verb will have fewer chances to be mapped to -ed or -ing initially without

much learning. This process might also explain why our network pro-

duced stronger associations between particular verb categories and partic-

ular su‰xes than the strength of the actual associations in the input (see

Section 3.1), because the pathways between these categories and su‰xes

are prototypical and serve the ‘‘magnet’’ role for incoming words.

To make this view clearer, we can draw the strength of associative links

from each node on the semantic map to the su‰x -ing represented on the
output phonemic sequence map at the end of training (Stage 4). The pho-

nemic representation of su‰x -ing is /IÐ/, so on the phonemic map, the

su‰x -ing is represented by the combination of nodes corresponding to

phonemes /I/ and /Ð/. In Figure 7, we can see clearly that some areas

on the semantic map have much stronger associations with -ing than oth-

er areas. (The strength of the associative links is represented by the gray

scales on the map: the darker it is, the weaker the associative strength is).

Comparing Figures 3 and 7, we can see that the light gray areas (indicat-
ing strong associations) match well with areas corresponding to -ing on

the semantic map, and the charcoal grey areas (indicating weak associa-

tions) match with the areas corresponding to -ed and -s.

Thus, DISLEX and DevLex-II not only allow for the formation of cat-

egories of lexical aspect through self-organization in the feature maps, but

also provide a mechanism for the formation of prototypical associations

between lexical aspect and grammatical aspect via Hebbian learning.

Moreover, as we will argue here, the same Hebbian learning mechanism
also accounts for the dilution or relaxation of the strong associations.

As seen in Tables 1 and 2, our networks’ production shows strong asso-

ciations between lexical aspect and grammatical su‰xes, and the strong
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Figure 7. Strength of associative links from each node on the semantic map to the grammatical su‰x -ing on the phone-

mic sequence map (the combination of nodes responding to phonemes /I/ and /Ð/). The gray scales indicate the amount of

strength of associative links. The darker the gray scale of a node is, the weaker the association between this node and the

su‰x -ing.
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associations weaken over time. This pattern is consistent with empirical

results from child language (see detailed discussion in Chapter 4 in Li

and Shirai 2000). How does the weakening of strong associations happen?

To answer this question, we analyzed DevLex-II’s production at di¤erent
stages. First, we calculated the number of verbs with more than one suf-

fixes (see Table 3), and found that early on, there were few multiple suf-

fixations with the same verbs (zero at Input Age 1;6), whereas later on

there were many more such cases (83 out of 169 at Input Age 3;0). This

result suggests that multiple su‰xations might be a driving force for the

learner to break from the strong associations to more diverse associations

between lexical aspect categories and grammatical su‰xes. Second, verbs

that took multiple su‰xes were mostly telic and activity verbs but few
stative verbs (among the 37 acquired verb stems with multiple su‰xes at

the end of Input age 3;0, 14 were telic verbs, 19 were activity verbs, but

only 4 were stative verbs). This indicates that telic and activity verbs are

more susceptible to changes away from the strong associations than are

stative verbs. Third, there are four possibilities of multiple su‰xation: a

given verb stem might take both -ing and -ed, both -ing and -s, both -ed

and -s or all three su‰xes. In DevLex-II, multiple su‰xations with -ing

and -s or -ing and -ed occurred more frequently than with -ed and -s or
all three su‰xes (e.g., for Input age 3;0, the numbers were 19, 12, 1 and

5 verb stems, respectively). This shows that -ed and -s may be less com-

patible within a given verb than are -ing and -ed or -ing and -s.

These analyses demonstrate a dynamical picture of the learning system

in the development from strong prototypical association between lexical

aspects and grammatical aspects to more diverse associations. This pic-

ture is consistent with empirical data from child language (Shirai and

Andersen 1995), although how the three patterns of multiple su‰xation
discussed above would map directly to patterns in child language needs

to be further tested in empirical research. Clearly, Hebbian learning can

account for the developmental process in the weakening of the strong

prototypical associations. This development involves a transitional process

in the restructuring of the mappings among phonological, semantic, and

Table 3. Number and percentage verbs with multiple su‰xes across input age groups in

DevLex-II’s production and in parental input data

Age 1;6 Age 2;0 Age 2;6 Age 3;0

Network production 0/22* (0%) 21/75 (28%) 50/124 (40%) 83/169 (49%)

Parental Input data 18/62 (29%) 35/100 (35%) 68/154 (44%) 97/184 (53%)

* a out of b verbs have more than one su‰xes
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morphological patterns. The restructuring in our network is based on the

network’s ability to reconfigure associative pathways — in particular, to

form new pathways between su‰xes and verbs — and its ability to weak-

en or eliminate old pathways that were the basis of the prototypical asso-

ciations. The adjustment of associative connections through Hebbian

learning is proportional to how strongly the nodes in the corresponding

maps are co-activated. For example, if given morphological nodes (e.g.
nodes corresponding to /I/ and /Ð/, which together represent the su‰x

-ing on the phonemic sequence map) and a given semantic node have

more chances to become co-activated, the strength of their associative

links are correspondingly increased. Conversely, if a given morphological

node and a given semantic node have fewer chances to become co-

activated, the strengths of their associative links are correspondingly de-

creased. This is the reason why we see some areas on the semantic map

having strong associative links with the su‰x -ing, while other areas hav-
ing very weak or no associations with it.

This learning procedure is basically input-driven, and therefore our de-

fault assumption is that the transition from strong prototypical associa-

tions to diverse mappings in the network is triggered by changes in the

distributional properties in the input (but recall that our network does

not simply mimic input verbatim, see discussion in 3.1). To verify this as-

sumption, we also analyzed the parental speech in our CHILDES corpus

that served as the input to our network. Our analyses indicated that al-
most all observations in the output of the network are also true in the in-

put. These include (1) the number of multiple su‰xed verbs increases with

time (see Table 3); (2) telic and activity verbs tend to have multiple suf-

fixes (for Input Age 3;0, 15 telic verb stems and 23 activity verb stems

had more than one su‰x, compared to 7 of stative verb stems); (3) -ing

and -s or -ing and -ed are more likely to occur on same verb stems (for

Input Age 3;0, 22 verb stems had both su‰xes -ing and -s, 16 had both

-ing and -ed, but only 4 had both -s and -ed, and 5 had all the three suf-
fixes). The high correlation between patterns in the input and those in the

output, and the network’s development therein, suggest that the network

has the ability to establish the necessary associative pathways for the

mapping between verb meanings and grammatical morphology, through

Hebbian learning.

As a final note, self-organization and Hebbian learning can also shed

light on the overgeneralization issue in the acquisition of the English

past tense. Our simulations point to two general conclusions with respect
to past tense overgeneralization. First, given that children’s early use of

-ed is restricted to the aspectual meaning of telic verbs, overgeneraliza-

tions of -ed will not occur across the board for all types of verbs but will
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rather be restricted to telic verbs initially (see also Shirai 1991). Second,

overgeneralizations of -ed are not only semantically restricted, but also

sometimes semantically motivated. In our network models, semantic

pathways formed via Hebbian learning can provide the basis for the pro-

duction of overgeneralization errors. For example, in Figure 3, in the

middle of the semantic map, su‰xed telic words locked and closed were

mapped on to nearby region since they share similar semantic properties.
During learning, the phonology, the semantics, and the phonemic output

representations (including the representation of -ed ) of locked were co-

activated, and similar co-activations also happened to closed. At the end

of training, the BMU nodes of the words locked, closed and their neigh-

boring nodes developed strong associations with the phonemic represen-

tation of -ed. Now, imagine what will happen when a telic irregular verb

shut is input to the network: (1) the verb is highly likely to be mapped

onto nearby regions of locked and closed, since all the three words share
similar semantic features, and (2) the network could associate the seman-

tics of shut with -ed because of the strong associations between the seman-

tic region and the su‰x, even though the model has only learned the asso-

ciations for lock/close and -ed, and not shut and -ed. Although our main

focus in our study is on the relationship between lexical aspect categories

and aspect morphology, and as such in our simulations we did not actu-

ally test the irregular past tense forms, our hypothetical overgeneraliza-

tion example of shut comes as a natural result of the structure of the net-
work’s semantic representations (which in turn is due to self-organization)

and of the associative mappings of semantic features, lexical forms, and

morphological devices (due to Hebbian learning) (see results for DISLEX

discussed in Li and Shirai 2000: Ch. 7).

4. Conclusion

In this paper we presented two self-organizing neural networks, DISLEX

and DevLex-II, to see how they can be used successfully to model the ac-

quisition of lexical and grammatical aspect, and to provide insights into

issues regarding the role of linguistic input, the representation of lexical

categories of verbs, and the development of prototypical to nonprototyp-

ical associations. Self-organization and Hebbian learning in these net-

works are two important computational principles that can account for
the psycholinguistic processes in the acquisition of lexical and grammati-

cal aspect. Our simulations demonstrate: (1) the networks are able to dis-

play patterns of association as observed in empirical acquisition studies,
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on the basis of its analyses of input characteristics; (2) self-organization of

the semantic structure of verbs leads to the formation of lexical aspect

categories and grammatical aspect categories, on the basis of the net-

work’s analysis of the complex feature-to-verb, and verb-to-morphology

relationships in language use; (3) focused associative pathways estab-

lished by Hebbian learning between meanings and morphology lead to

particularly strong associations between lexical aspect and grammatical
aspect, thereby to undergeneralized patterns of grammatical morphology

as observed in early child language; and (4) associative links between

forms and meanings along with incremental vocabulary growth lead to

diverse mappings, first with a relatively small number of words and mor-

phemes and then spreading to others, which accounts for how the strong

associations gradually weaken or dissolve in children’s language.

As we mentioned earlier, the goal of our study is to determine whether

simple but biologically plausible computational principles in self-
organizing neural networks can account for empirically observed patterns

in children’s acquisition of lexical aspect and grammatical morphology.

In particular, we wanted to see if our networks, without a priori stipula-

tions about the structure of meaning or concept, can display the early

strong associations between lexical aspect and grammatical aspect, and

how they can also move away from the strong associations over time to

approach adult patterns of aspect use. Our simulations here, along with

other published studies (Farkas and Li 2001, 2002; Li 2003; Li et al.
2004; Li et al. 2007; Zhao and Li 2005), clearly serve to demonstrate the

utility of self-organizing neural networks for unraveling mechanisms un-

derlying lexical and grammatical acquisition, particularly with respect to

the role of input and emergent lexical categories. Our study may also

serve to generate interests in further empirical studies against which we

can compare detailed patterns in our modeling results (e.g., the multiple

su‰xation patterns). Finally, one must note that in the actual learning sit-

uation the child has available a myriad of other types of information
grounded in visual or other perceptual interactions with parents or care-

givers, whereas our network does not have these types of information (see

Yu and Smith [2006] for a recent analysis). What we have demonstrated

here is the ability of artificial neural networks based on self-organization

and Hebbian learning to mechanistically account for developmental pat-

terns in language acquisition even without real-world visual or perceptual

information.
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1. Note that -ed marks both past tense and perfective aspect in English, just as -s marks

both present tense and habitual aspect. Separate a‰xes are often used in other language

for tense and aspect.

2. Inputs of SOM are often multivariate data with the form of high-dimensional vectors.

These vectors can be considered as points distributed around a high-dimensional hyper-

space. SOM can project these inputs onto nodes on a two-dimensional map. At first, an

area of nodes (‘‘activity bubble’’) will respond to an input, and then the bubbles will

gradually reduce in size, until only one node is active. Details of SOM are further dis-

cussed in 2.1.1.

3. A preliminary version of the first model was reported in Li (2000) and Li and Shirai

(2000: Ch. 7).

4. Although the irregular verbs were also included in the simulations based on DISLEX,

we did not examine their relationship with regular past tense/perfective forms (but see

our discussion in Section 3.3 on the issue of overgeneralization).

5. In our current simulations we used the real-value vectors.

6. Unlike in Study 1, bare verb forms were excluded from our simulations, as well as irreg-

ular past tense forms and nonverbs. Exclusion of these forms simplifies the simulation

task and makes the analysis more tractable, given that DevLex-II involves a more com-

plex network architecture than DISLEX. Moreover, our major goal here is to see wheth-

er the use of verbal su‰xes is correlated with the lexical aspect of verbs, and as such our

simulations are focused on su‰xed verbs.

7. Our analyses below deviate slightly from a strict Vendlerian four-way classification, be-

cause accomplishment and achievement verbs are often di‰cult to separate without an

extensive analysis of the sentence and speech context. Thus in what follows telic verbs

include both accomplishments and achievements.

8. Jump can also be construed iteratively, so that jumping refers to a series of jumps, which

is why we may see that children use jumping more frequently than jumped in actual

speech.
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