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1.  Introduction 
 
To describe and exchange information about time is an important part of 
human activities. The expression of time is therefore one of the central con-
ceptual domains of our language use (see chapter 1 of this book and Bates, 
Elman & Li 1994). When we are talking, we describe situations as being in 
the past, present or in the future, and we talk about events as ongoing or 
completed. There are two key linguistic categories for expressing temporal 
concepts in the world’s languages: tense and aspect. Tense is often con-
cerned with the chronological ordering of situations that happen at different 
time points, and is often used to locate the relationship between time of 
event and time of speech. In contrast, aspect typically characterizes how a 
speaker views the temporal contour of a situation described, for example, 
the beginning, continuation, or completion of a situation.  

As temporal contours and relationships of events figure prominently in 
people’s speech activities, it is important for any given human language to 
have a capable system for expressing these events and relationships, and for 
speakers/listeners to learn and process this system. Empirical evidence ap-
pears to support the idea that tense and aspect are among the earliest lin-
guistic devices acquired by children, and as such the scientific study of the 
expression of time provides significant insights into not only how young 
children acquire temporal notions, but also what psycholinguistic mecha-
nisms underlie the general acquisition processes.   

In this chapter, we review computational models of the expression and 
acquisition of temporal concepts in language. With the advancement of 
modern computers in the last decades, computational modeling has become 
a very powerful methodology in many disciplines, including cognitive sci-
ence and psycholinguistics. With respect to our focus here, computational 
models can help us introduce explicit, controllable and testable mechanisms 
to understand the linguistic phenomena related to temporal expressions. In 
addition, computational models often include certain levels of simplification 
in terms of language details, which makes them easier to study than tradi-
tional empirical studies that are often costly. The models and simplified 
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datasets both make it possible for us to examine the underlying mechanisms 
of temporal concepts without getting entangled by specific details or certain 
noise in the linguistic input.       

The computational modeling of tense has attracted much attention in 
psycholinguistics and cognitive science since Rumelhart and McClelland 
(1986) introduced a simple feed-forward neural network model1 (the R&M 
model) to account for children’s acquisition of English past tense. Given the 
prominence of their model and the subsequent debates in the field, we will 
only provide a very brief review on the acquisition of the English past 
tense. The primary focus in our discussion will be on various computational 
models that account for the expression and acquisition of aspect. Of course 
one needs to realize that the expressions of tense and aspect are often closely 
correlated in many languages; for example, the English past tense marker  
-ed marks both the past tense and the perfective aspect (Comire 1976). 
Thus, in our discussion we often need to speak of the acquisition of tense 
and aspect together.  

                                                        
1 A neural network model is a computational model made of information process-

ing units (neurons) that are connected in a network. The construction and learning 
of neural network models are often based on considerations of neural information 
processing. Different from traditional digital computers, the computation in a 
neural network is based on the connection change among the parallel working 
units, which has made it a great success in many scientific disciplines during last 
two decades, such as cognitive science, linguistics, psychology, to name a few. 
Neural network modeling is also called connectionism or PDP (parallel distrib-
uted processing). It views knowledge representation and acquisition as distrib-
uted, parallel and interactive in nature. First, a given concept is represented not by 
a single unit or node but by multiple units or nodes in concert, the result of which 
is a pattern of activation of relevant micro-features that distribute across multiple 
units. Second, in terms of knowledge acquisition, connectionism argues for 
learning through the adaptation of weights, the strengths of connections that hold 
between multiple and parallel working units, which can also serve as a sim-
plification of the synaptic connections among real neurons. There have been 
various algorithms developed for adjusting the weights to an optimal set of con-
figurations, which may lead to the appropriate activation patterns of units that 
represent new knowledge. Third, the interactive activities among multiple units 
and the learning environment play very important roles in the information proces-
sing. For example, PDP argues that linguistic representations can be best under-
stood as the properties that emerge out of learning (i.e., ‘emergent properties’) 
rather than built in a priori, owing to the interaction of the learning system with 
the linguistic environment.               
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1.1.  Computational models of tense 
 
The English past tense includes both regular (e.g. work-worked) and irregu-
lar forms (e.g. go-went). When children learn these forms, they sometimes 
make “over-generalized” error such as producing goed as the past tense of 
go, and breaked as the past tense of break. In addition, studies have shown 
a “U-shape” trajectory in children’s learning of irregular past tenses. At 
first, they seem to have mastered only a few but correct inflectional forms of 
verbs; then they forget the correct forms and make many “overgeneralized” 
errors; finally, children grasp the usage of irregular past tense forms as well 
as thousands of other regular verbs. (Berko 1958; Elman, Bates, Johnson, 
Karmiloff-Smith, Parisi, & Plunkett 1996; Marcus, Ullman, Pinker, Hol-
lander, Rosen, & Xu 1992). These phenomena have been traditionally inter-
preted by some investigators as indicating two totally separate mechanisms 
for children to learn verb past tenses: one dictionary-like rote mapping for 
irregular verbs, and the other the explicit representation of a rule of adding 
suffix -ed to regular verbs (Pinker 1994). According to this “dual mecha-
nisms” theory, at first, children learn past tenses only by rote learning, and 
then almost suddenly, they discover the existence of the rule controlling the 
formation pattern of regular past tenses; they then apply this rule to any 
new verb, including irregular verbs, thus causing the so-called “overgener-
alized” errors. In the end, children realize that there are exceptions in Eng-
lish past tenses, and then correct their errors and produce the right irregular 
forms. This type of “dual mechanisms” theory fits well with the general 
assumption about language as a kind of general symbolic machinery that 
Chomsky and his followers have advocated.                         

The symbolic theory of language dominated the psycholinguistic view 
of morphology and its acquisition for a long time. In 1986, Rumelhart and 
McClelland (R&M) introduced a simple feed-forward neural network that 
clearly shows that overgeneralizations and “U-shaped” learning of English 
past tense may be due to a single mechanism based on neurobiologically 
plausible features, without the need of two explicit and distinct mechanisms. 
Basically, the R&M model is a model of pattern associator that can make 
the strong connection between a verb stem and its phonological form of 
past tense. There has been much computational modeling work inspired by 
R&M’s model as well as heated debate on what drives the learning of the 
English past tense.  

The R&M model was criticized by Pinker and his colleagues (Pinker & 
Prince 1988; Marcus etal. 1992) on grounds that the model used unrealistic 
input and training schedules and the model was unable to capture subtle 



244    Ping Li and Xiaowei Zhao 

error patterns in realistic speech. In response to these criticisms, other neural 
network models equipped with “hidden units” and the “back propagation” 
learning algorithm have been successfully applied to simulate the acquisi-
tion of the English past tense and overcome the shortcomings of the R&M 
model, such as the model introduced by Plunkett and Marchman (1991) and 
that by MacWhinney and Leinbach (1991). On the other hand, Ling and 
Marinov (1993) provided a symbolic pattern associator (SPA) in support of 
the “dual mechanisms” assumption. The authors claimed that their model 
outperformed both the R&M model and the MacWhinney & Leinbach 
(M&L) model when compared with the real data extracted from human 
subjects. A further detailed comparison of SPA and M&L models (Mac-
Whinney 1993), however, showed that actually the M&L model performed 
as well as the SPA model in all the past-tense learning tasks; in addition, 
there were two artificial parameters, which did not have much empirical 
evidence, that played extremely important roles in the emergence of the U-
shaped curve in the SPA model.                                   

In short, in the last two decades, there was a great deal of interest in the 
computational modeling of the acquisition of tense, focusing on the capacity 
of neural network models of the English past tense acquisition. The center 
of the debate was whether the acquisition of grammar can be viewed as the 
acquisition of symbolic rule systems (in the views of the “dual mechanisms” 
theory) or whether it can be treated as a statistical learning process (in the 
views of connectionist theory). The debate is far from being resolved, but 
the reader is encouraged to consult Elman, Bates, Johnson, Karmiloff-Smith, 
Parisi & Plunkett (1996) for integrative discussions.  

 
 
1.2.  Computational Models of Aspect 
 
For the remainder of this chapter, we will focus on computational models of 
the expression and acquisition of aspect, another important temporal concept 
in languages. Although in the computational linguistics literature, a few com-
putational models have been applied to study aspect categories (as well as 
tense categories) and analyze the temporal relationships between clauses in 
terms of event time, speech time, and reference time (Passonneau 1988), 
computational models of the expression and acquisition of aspect fell far 
shorter compared with those of the acquisition of tense. Given that previous 
studies often focused on how to classify verbs into appropriate aspect classes 
according to the relevant linguistic features and contexts in order to reason 
about time, we will first discuss here different aspect categorization theories.         
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1.2.1.  Two Kinds of Aspect 
 

Linguists generally distinguish between two kinds of aspect, grammatical 
aspect and lexical aspect (under various names; see chapter 2, sections 3 
and 4, and Li & Shirai 2000, for reviews). Grammatical aspect is related to 
aspectual distinctions which are often marked explicitly by linguistic de-
vices, such as the inflectional suffixes and auxiliaries in English. It is also 
known as the viewpoint aspect (Smith 1997) which refers to a particular 
viewpoint toward the situation being talked about. According to Comrie 
(1976), there are two major categories of grammatical aspect: imperfective 
and perfective. Imperfective aspect presents a situation with an internal 
point of view, often as ongoing (progressive) or enduring (continuous), 
whereas perfective aspect presents a situation with an external perspective, 
often as completed. In English, the imperfective-perfective contrast is real-
ized in the difference between the progressive be V-ing and the past-
perfective -ed.    

Lexical aspect, on the other hand, refers to the characteristics inherent in 
the temporal meanings of a verb, for example, whether the verb encodes an 
inherent end point of a situation, or whether the verb is inherently stative 
(i.e., continuous and homogeneous) or punctual (i.e., momentary and in-
stantaneous). Most researchers adopt Vendler’s (1957) classification as the 
standard treatment of inherent semantics of verbs, which involves four cate-
gories: activities, accomplishments, achievements, and states. A new catego-
ry has been lately added, which is the so-called “point activities” (Moens & 
Steedman 1988) or “semelfactives” (Smith 1997). Activity verbs like walk, 
run and swim encode situations as consisting of successive phases over time 
with no inherent end point. Accomplishment verbs like build a house also 
characterize situations as having successive phases, but unlike activities 
they encode an inherent endpoint (e.g., house-building has a terminal point 
and a result). Like accomplishments, achievement verbs also encode a natu-
ral endpoint, but unlike accomplishments and activities they encode events 
as punctual and instantaneous, that is, as having no duration, such as in fall, 
recognize a friend and cross the border. State verbs encode situations as 
homogeneous, with no successive phase or endpoints, involving no dy-
namicity, such as know, want and love. Finally, the semelfactive verbs in-
volve dynamicity, and encode instantaneous events, but these verbs do not 
have an inherent end point, like cough or hiccup in English. In addition, on 
the basis of whether the verb encodes endpoints, linguists also call activity, 
state, and semelfactive verbs “atelic” (no endpoint), and accomplishment 
and achievement verbs “telic” (with endpoint). 
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In English, grammatical aspect and lexical aspect often interact with 
each other in complex fashions. Uses of the inflectional suffixes, -ing, -ed 
and -s are in many cases constrained. For example, progressive aspect -ing 
does not occur often with state verbs; thus while “John knows the boy” is 
good, “John is knowing the boy” sounds odd (Smith 1983). There are also 
combinatorial constraints between -ing and event verbs; for example, “The 
book is falling off the shelf” is odd when used to refer to the actual falling 
down, but is good when used to mean a preliminary stage (i.e., prior to ac-
tual falling; Smith 1997). These kinds of constraints may reflect the intricate 
relationships between language use and characteristics of the described 
event. For example, as pointed out by Brown (1973), many events with an 
end result last for such a short period of time that any description of them is 
unlikely to occur during the period, such as the actions of fall, drop, and 
break. Thus it is rare for speakers to describe the “ongoing-ness” of such 
events with -ing but more natural for them to describe the “completeness” 
using past-perfective forms.  

 
 

1.2.2.  Computational models of aspectual classification 
 
As we mentioned before, previous computational models about aspect often 
focused on aspectual classification. For example, in a study conducted by 
Bennett, Herlick, Hoyt, Liro and Santisteban (1989), using three aspectual 
features the authors introduced a five-way aspectual classification system to 
distinguish verbs into the five lexical aspects as we described in section 
1.2.1. The three features are ±dynamic, ±atomic and ±telic. Their feature-
based descriptions of the five aspectual types are shown as follows (adapted 
from Bennett et al. 1989): 
 

Accomplishment:    [+d +t –a]  
Achievement:    [+d +t  +a]  
(Extended) Activity:   [+d –t  –a] 
(Point) Activity/Semelfactive:  [+d –t +a] 
State:     [–d –t  –a]  

 
This classification method is consistent with Smith’s (1991) aspectual 
analysis except that Bennet et al. used the term “atomic” here to represent 
the “punctual” feature in Smith’s analysis. In addition, the authors further 
argued that not only the verb features but also some other sentential features 
(e.g. certain tenses, temporal adverbials) can affect the aspectual situation 
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of verbs in certain sentences. The authors discussed about eleven such sen-
tential feature which can also operate on the [telic] and [atomic] features. 
For example, in the sentence John ran, the verb ran keeps its original aspect 
type of activity. But in some other sentences like John ran a mile, John ran 
to the park, and John ran until 8 o’clock, the noun phrase, the preposition 
phrase and the durative adverbial after the verb ran imply the endpoint of 
this action (+telic), and thus the lexical aspect of this verb changes to ac-
complishment in these sentences.              

Bennett et al.’s work showed that aspectual classification is a complex 
process that depends on both verbs’ intrinsic temporal properties and the 
syntactical features. However, these authors did not show how to use spe-
cific methods to realize these classifications computationally. A recent study 
conducted by Siegel and McKeown (2000) attempted to fill the gap. They 
declared that the co-occurrence frequencies between the verb and certain 
linguistic modifiers can reliably predict the verb’s aspectual class. The 
authors generalized 14 so-called “linguistic indicators” (the co-occurrence 
frequency measures) as the basis to classify verbs into state vs. event verbs, 
and further into culminated (telic) vs. nonculminated (atelic) verbs in the 
event category. Specifically, they used three supervised machine/statistical 
learning methods to combine the 14 linguistic indicators for aspectual clas-
sification. The three methods are: logistic regression, decision trees, and 
genetic algorithm (GA).  

Logistic regression is a multivariate statistical method that can derive an 
overall variate based on the weighted nonlinear combination of the 14 vari-
ables or the linguistic indicators. The overall variate can increase the classi-
fication performance of the model. The decision tree is a traditional data 
mining method based on many choice points. At each point, according to 
the value of a specific linguistic indicator, the system makes an if-then-else 
choice to decide which one of the two possible classes a verb should belong 
to. When facing a classification task for a verb, the method will start from 
the root of the decision tree, undergo a series of tests on choice points, and 
then end at a leaf (thus labelled by an aspectual type). The decision tree en-
ables the complex interaction of different indicators in the system. Finally, 
genetic algorithm (GA) is a novel method in computer science based on the 
concept of Darwinian natural selection and survival of the fittest (Holland 
1975). This method enables the generation and evolution of arbitrary 
mathematical combinations of the 14 linguistic indicators to classify the 
verb aspects. All the three methods have shown good performance on the 
two-way classification of lexical aspect (state vs. event; culminated vs. non-
culminated).  
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Neural network models can also be used in aspectual classifications. 
Based on the idea that people should be able to extract aspectual features 
and meanings from syntactic representations, Scheler (1997) introduced a 
model that can extract the grammatical categories of English aspects (pro-
gressive vs. simple) and Russian aspects (imperfective vs. perfective). The 
model includes four main modules: 

 
(1)  An automatic tagger that can provide syntactic tags to the words in the 

input text in the system, thus transferring the text to specialized syntac-
tic representations; 

(2)  A process that transforms the syntactic representation into the semantic 
representation, a syntactic-to-semantic pattern association task; 

(3)  A set of semantic features describing aspectual meanings of verbs, such 
as event type, action status, and habituality; 

(4)  A process that maps the individual aspectual meanings to the gram-
matical categories for each language, which is the final pattern 
classification task. 

 
The modules (2) and (4) are the core parts of the model, and Scheler used 
two standard back-propagation neural networks with hidden layers to simu-
late the processes of the two modules. For module (2), the author con-
structed a network with an input layer of 25 binary neurons (which represent 
the 6 slots syntactic features), two hidden layers with 15 and 12 neurons 
respectively, and an output layer with 34 binary neurons representing the 15 
semantic features. The network was trained to associate the syntactic pat-
terns of verbs to their semantic representations. The network successfully 
learned 87 percents of the total syntactic-semantic pattern pairs, although 
the generalization performance was not as good as the learning. Based on 
the simulating results, the author argued that most of the information 
needed to extract semantic features for aspects is based on local syntactic 
features. For module (4), the author used a 34x5x2 network to classify 
verbs into different grammatical aspectual categories according to their se-
mantic features. The network has an input layer with 34 binary neurons, a 
hidden layer with 5 neurons, and an output layer with 2 neurons to represent 
the grammatical aspectual types. The network performed well in both learn-
ing and generalization of the patterns. This model was a first full-scale back-
propagation connectionist model for aspectual classification. A problem 
with the model is that the two neural networks for modules (2) and (4) in 
the model were isolated and did not communicate with each other. In addi-
tion, the generalization ability of the syntactic-semantic association network 
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was not good. In section 2, we will introduce a self-organizing neural net-
work model that can correct these problems.              

The aspectual models discussed above are all about the expression or 
classification of aspectual categories. In contrast to this line of research, 
scholars have also been interested in how children acquire the classification 
of lexical aspect and how this acquisition influences their use of grammati-
cal aspect, which brings us to the next section.      

 
 
1.2.3.  Aspect acquisition in child language  

 
A core issue in the study of aspect acquisition is how children acquire the 
two kinds of aspect (grammatical aspect and lexical aspect, see section 1.2.1) 
and their interactions in different languages. It has been now well estab-
lished that there is a strong association between lexical aspect and gram-
matical aspect in child language: children initially tend to restrict tense-
aspect morphology to specific categories of lexical aspect. For example, 
English-speaking children initially tend to use progressive marker -ing only 
with atelic, activity verbs, whereas past-perfective marker -ed only with 
telic verbs (accomplishment and achievements) at an early stage of develop-
ment (McShane & Whittaker 1988; Shirai & Andersen 1995). This restricted 
or “undergeneralized” pattern of use has led to intense debate with respect 
to various theoretical frameworks (see Li & Shirai 2000 for review). An 
early suggestion from Bickerton (1984) was that children have innate se-
mantic categories that roughly correspond to the lexical aspect distinctions 
of verbs (e.g., punctual-nonpunctual, state-process distinctions), and these 
categories are biologically programmed as part of a Language Bioprogram. 
Bickerton relied on both data from creole languages and child language ac-
quisition to support his proposal that children’s acquisition of tense-aspect 
morphology has a biological basis. Subsequent crosslinguistic studies, how-
ever, have provided counter evidence to this hypothesis (e.g., Li & Bower-
man 1998; Shirai & Andersen 1995), and led researchers to propose a variety 
of input-driven hypotheses about how children acquire tense-aspect mor-
phology and lexical semantics of verbs (see Li & Shirai 2000 for a review).  

 The goal of our computational modelling is to provide mechanistic 
accounts of how empirically observed patterns could emerge out of simple 
computational principles. In previous empirical studies (Li & Bowerman 
1998; Li & Shirai 2000), we proposed that the initial lexical-morphological 
associations could arise as a result of the learner’s analyses of the verb-
morphology co-occurrence probabilities in the input environment of the 
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language learner. In parental speech, there are probabilistic associations 
between progressive markers and atelic verbs, and between perfective 
markers and telic verbs (Shirai & Andersen 1995). Children’s initial under-
generalizations (restricted uses of morphology) might reflect their analyses 
of these probabilities. In the next section, we will discuss a neural network 
model which can analyze these probabilities and arrive at patterns that re-
semble children’s patterns of acquisition.  
 
 
2.  A self-organizing neural network model of the acquisition of aspect 
 
In the last few years we have explored self-organizing neural networks as 
candidates of cognitively and neurally plausible models of language acqui-
sition (Li 2003, 2006; Li, Farkas & MacWhinney 2004; Li, Zhao & Mac-
Whinney 2007; Zhao & Li 2005, 2007, 2008, in press). Compared to other 
developmental neural network models, most of which rely on supervised 
learning algorithms (e.g., back-propagation, see models reviewed in Elman 
et al. 1996), self-organizing neural networks, especially the so-called self-
organizing maps (SOM), have several important properties that make them 
particularly well suited to the study of lexical and morphological acquisition 
(see Li 2003, 2006 for discussion).  

First, these models belong to the class of unsupervised learning net-
works that require no explicit teacher; learning is achieved by the system’s 
organization in response to the input. Such networks provide computation-
ally more relevant models for language acquisition, given that in real lan-
guage learning children do not receive constant feedback about what is in-
correct in their speech (see Li 2003; MacWhinney 1998, 2001; Shultz 2003 
for discussion). Second, self-organization in these networks allow for the 
gradual formation of structures on 2-D maps, as a result of extracting an 
efficient representation of the complex statistical regularities inherent in the 
high-dimension input space (Kohonen 2001). Third, the self-organizing map 
forms topography-preserving structures, which means nearby areas in the 
map respond to inputs with similar features. This property allows us to 
model the emergence of semantic categories as a gradual process of lexical 
learning. Finally, several self-organizing maps can be connected via Hebbian 
learning, a well-established biologically plausible learning principle, accord-
ing to which the association strength between two neurons is increased if 
the neurons are both active at the same time (Hebb 1949). Although Hebbian 
learning itself is not an inherent property of the self-organizing algorithm, 
when incorporated, the SOM model would have strong implications for 
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language acquisition: it can account for the process of how the learner es-
tablishes relationships between word forms, lexical semantics, and gram-
matical morphology, on the basis of how often they co-occur and how 
strongly they are co-activated in the representation.  

A number of recent models have taken advantage of the properties dis-
cussed above to examine language processing and language acquisition. 
These include DISLEX (Miikkulainen 1997), DevLex (Li, Farkas, & Mac-
Whinney 2004), DevLex-II (Li, Zhao & MacWhinney 2007), and SEMANT 
(Silberman, Bentin, & Miikkulainen 2007).  In particular, we have applied 
the DISLEX and DevLex-II models to the study of the acquisition of gram-
matical aspect (-ing, -s and -ed) in connection with the acquisition of se-
mantic categories of lexical aspect (Li 2000; Li & Shirai 2000; Zhao & Li, 
in press). In what follows, we will provide a review of the findings from our 
DevLex-II model that has been used to simulate aspect acquisition2 (Zhao 
& Li, in press). 

 
 

2.1.  A sketch of DevLex-II 
 
DevLex-II is a multi-layer self-organizing neural network for modeling 
early lexical acquisition. It is based on and adapted from the DevLex model 
(Li, Farkas, & MacWhinney 2004). It has been developed to account for 
empirical phenomena in early lexical acquisition (e.g., ‘vocabulary spurt’) 
and bilingual lexical development (Li, Zhao, & MacWhinney 2007; Zhao & 
Li 2005, 2007, 2008). The basic structure of DevLex-II is shown in Figure 1.  
 

                                                        
2 Here we only provide a review of simulation results based on DevLex-II. For 

detailed results about aspect acquisition with the DISLEX model, see Li (2000) 
and Li and Shirai (2000: ch. 7). 
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Figure 1. The architecture of the DevLex-II model. Each of the three self-
organizing maps (SOM) takes input from the lexicon and organizes 
phonology, semantics, and phonemic sequence information of the vo-
cabulary, respectively. The number of nodes in each map is indicated in 
parentheses. The dimension of the input vector for each map is indi-
cated by ‘d = ’ in parentheses next to the input representation symbols. 
The maps are connected via associative links updated by Hebbian 
learning.  

 
DevLex-II uses three layers of SOMs to process three basic levels of lin-
guistic information: phonological content, semantic content, and output pho-
nemic sequence. The phonological layer and semantic layer operate accor-
ding to the standard SOM algorithm (see Kohonen 2001, for details). The 
standard SOM constructs a two-dimensional topographic map for the orga-
nization of input representations, where each node (or “neuron”) is a location 
on the map that has input connections to receive external stimulus patterns. 
At each training step of SOM, an external input pattern (e.g., the phono-
logical or semantic information of a word in our study) is randomly chosen 
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and presented to all the nodes on the map; this activates many nodes on the 
map, according to how similar by chance the input pattern is to the weight 
vectors of the nodes, and the node that has the highest activation is declared 
the winner (the Best Matching Unit or BMU). Once a node becomes active 
in response to a given input, the weight vectors of that node and its neigh-
boring nodes are adjusted, so that they become more similar to the input 
and the nodes will respond to the same or similar inputs more strongly the 
next time. In this way, every time an input is presented, an area of nodes 
will become activated on the map (the “activity bubbles”) and the maxi-
mally active nodes are taken to represent the input. Initially activation oc-
curs in large areas of the map, that is, large neighborhoods, but gradually 
learning becomes focused and the size of the neighborhoods reduces. This 
process continues until all the inputs have found some maximally respond-
ing nodes as their BMUs. As a result of this self-organizing process, the 
statistical structures implicit in the input are represented as topographical 
structures on the 2-D space. In this new representation, similar inputs will 
end up activating nodes in nearby regions, yielding meaningful activity 
bubbles that can be visualized on the map.  

The addition of the phonemic sequence layer represents a step forward 
from the original DevLex model, and is inspired by models of word learning 
based on temporal sequence acquisition (e.g., Gupta & MacWhinney 1997). 
It is designed to simulate the challenge to young children when they need to 
develop better articulatory control of the phonemic sequences of words. Just 
as the learning of auditory sequences requires the mediation of memory sys-
tems, the learning of articulatory sequences requires support from the re-
hearsal in phonological working memory (Gathercole & Baddeley 1993; 
Gupta & MacWhinney 1997). In our implementation of this idea, the activa-
tion pattern corresponding to the phonemic sequence information of a word 
is formed according to the algorithm of SARDNET (James & Miikkulainen 
1995), which works slightly differently from the standard SOM algorithm. 
At each training step, phonemes are input into the sequence map one by 
one, according their order of occurrence in the word. The winning unit of a 
phoneme is found and the responses of nodes in its neighborhood are ad-
justed. Once a unit is designated as the winner, it becomes ineligible to re-
spond to the subsequent inputs in the sequence. In this way, same phonemes 
in different locations of a word will be mapped to different (but adjacent) 
nodes on the map as a result of the network’s topography-preserving ability. 
When the output status of the current winner and its neighbors is adjusted, 
the activation levels of the winners responding to phonemes before the cur-
rent phoneme will be adjusted by a number γ d, where γ is a constant and d 
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is the distance between the locations of the current phoneme and the previ-
ous phoneme that occurred in the word. This adjustment is intended to 
model the effect of phonological short-term memory during the learning of 
articulatory sequences; the activation of the current phoneme could be ac-
companied by some rehearsal of previous phonemes due to phonological 
memory, which deepens the network’s or the learner’s impression of previ-
ous phonemes. The γ here is chosen to be less than 1 (0.8 in our case), in 
order to model the fact that phonological memory tends to decay with time. 
For further details of the DevLex-II model, see Li, Zhao, and MacWhinney 
(2007).  

The associative links between any two layers of maps in DevLex-II are 
trained by Hebbian learning, such that the activation of a word on the form 
map can evoke the activation of a word on the meaning map via form-to-
meaning links, thereby modeling word comprehension, and the activation 
of word meaning can cause the formation of word sequence via meaning-
to-sequence links, thereby modeling word production. In DevLex-II, we say 
that a word has been learned in comprehension when a node in the destina-
tion map (word meaning map) becomes consistently activated as the ‘win-
ner’ for a given input from the source map (word form map). We say that a 
word has been learned in production when several nodes in the word se-
quence map become activated sequentially as winners that represent the 
word’s phonemes.  
 
 
2.2.  Input representations for DevLex-II  
 
As with DevLex, we used the PatPho system to construct the phonological 
patterns for word forms. PatPho is a generic phonological pattern generator 
for neural networks, which fits every word (up to tri-syllables) onto a tem-
plate according to its vowel-consonant structure (Li & MacWhinney 2002). 
PatPho uses the same phonological method as in MacWhinney and Leinbach 
(1991), but relies on articulatory features of phonemes (Ladefoged 1982) to 
represent the phonemes, Cs and Vs, and a phoneme-to-feature conversion 
process to produce real-value or binary feature vectors for any word up to 
three syllables. In short, PatPho can code each input word in our simulation 
by the template CCCVVCCCVVCCCVVCCC, and then replace each pho-
neme with its appropriate representation using real-value or binary num-
bers.3 For example, the verb pick with its progressive marker -ing would be 
                                                        
3  In this simulation we used the real-value vectors. 
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encoded as pCCVkCCVCCVVCCC, and is represented as the following 
vector: 

 
/pk/:   1–0.45–0.733    0–0–0    0–0–0    0.1–0.1–0.185    0–0–0    1–0.921–0.733    0–0–0   

0–0–0   0.1–0.1–0.185   0–0–0   0.75–0.921–0.644   0–0–0   0–0–0   0–0–0    0–0–0   
0–0–0   0–0–0   0–0–0 

 
In this representation, the first three units [1–0.45–0.733] indicate the pho-
netic features of phoneme /p/, the second and third sets of three units indi-
cate that no more consonants follow /p/ in this word (hence zeros). The rep-
resentation is left-justified, which means that in a given syllable, the repre-
sentation of the phoneme is pushed toward the left side of the template 
(rather than the right side).  

On the output sequence map, the phonemes of a word are processed one 
by one, so we need representations for each of the 38 English phonemes. 
Using the method of PatPho, we can represent these phonemes by three-
dimensional real-value vectors. In particular, in the vector, the first dimen-
sion indicates whether the phoneme is a vowel or a consonant, and in the 
case of a consonant, whether it is voiced or voiceless. The second dimension 
indicates the position for vowels and manner of articulation for consonants 
and the third dimension indicates the sonority for vowels and place of arti-
culation for consonants (see Li & MacWhinney 2002).  

With respect to the semantic representation of the input, we used a spe-
cial recurrent network called WCD (word co-occurrence detector) to gener-
ate vectors. WCD allows us to generate vectors that dynamically change 
with the learning history: lexical representations enrich over time as a func-
tion of learning the number of co-occurring words in the input sentences. 
Metaphorically, this learning scenario can be compared to filling the holes 
in a Swiss cheese: initially there may be more holes than cheese (shallow 
representations) but the holes get filled up quickly as the co-occurrence 
context expands with more words being acquired (rich representations).  

Briefly, WCD works as follows (see Farkas & Li 2001, 2002; Li, Farkas 
& MacWhinney 2004, for details). It reads through a stream of input sen-
tences one word at a time, and learns the transitional probabilities between 
words which it represents as a matrix of weights. Given a total lexicon sized 
N, all word co-occurrences can be represented by an N x N contingency table, 
where the representation for the ith word is formed by concatenation of ith 
column vector and ith row vector in the table. Hence, the two vectors corre-
spond to the left and the right context, respectively; WCD transforms these 
probabilities into normalized vector representations for word meanings, 
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which in turn are read by self-organizing maps (after Random Mapping, a 
procedure to achieve reduced uniform dimension of vectors; see Ritter & 
Kohonen 1989). Here, different inflectional forms of the same verb are con-
sidered as different items, and therefore WCD will derive different (but also 
similar) representations for them. For example, playing and played will be 
represented distinctly, but since the co-occurrence contexts for these words 
will overlap significantly (e.g., the co-occurring words tend to be ball, toys, 
etc.), the representations for them will also tend to be similar. An example 
of a semantic representation generated by WCD is shown below (only part 
of the vector is shown, the full vector contains 2002 units). Here, every two 
units of the vector represent the normalized co-occurrence possibility be-
tween the verb picking and another word in the lexicon. The odd unit repre-
sents the possibility that picking happens before a given word, and the even 
unit represents the possibility that picking follows a given word in the con-
text.  

 
Picking:  0.000000  0.000000  0.006004  0.007211  0.003548  0.017577  0.000000  

0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.001202  
0.000000    0.000300    0.000000    0.000000    0.000000    0.000000    …  

 
DevLex-II also uses as its input data the parental or caregivers’ speech in 
the CHILDES database (MacWhinney 2000). Here we extracted all parental 
or caregivers’ utterances from the complete English database (as of 2002). 
A verb type was chosen as input if it occurred in the parental speech for 
fifty or more times in a given age period. The verbs were divided into four 
stages to be presented to the network, according to the age groups (Age 1;6, 
2:0, 2;6, 3;0) at which they occurred. To increase the accuracy of WCD rep-
resentations, we also analyzed the selected verbs along with the nouns, ad-
jectives, and closed-class words from the MacArthur-Bates Communicative 
Development Inventories (the CDI, Toddler’s List; Dale & Fenson 1996; 
homographs and homophones, word phrases, and onomatopoeias were ex-
cluded). These CDI words along with the verbs that fit our selection crite-
rion (a total of 1001 words) served as the input contexts of WCD. We com-
puted the semantic representations of the vocabulary at each of the four 
growth stages, resulting in 4 different data sets with increasing complexity 
in semantic representation. The four growth stages had the following vo-
cabulary composition: 

 
(1)  Input Age 1;6 (13–18 months): a total of 62 verb types fit our selection 

criteria for the period before age 1;6; 35 of these verbs occurred with  
-ing, 13 with -ed, 14 with -s. 
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(2)  Input Age 2;0 (19–24 months): 100 verb types were selected, which in-
cluded the new words as well as words from the previous stage; 58 oc-
curred with -ing, 19 with -ed, 23 with -s. 

(3)  Input Age 2;6 (25–30 months): 154 verb types were selected, among 
which 86 occurred with -ing, 32 with -ed, 36 with -s. 

(4)  Input Age 3 (31–36 months): A total of 184 verb types were selected, 
out of which 97 verbs occurred with -ing, 41 with -ed, and 46 with -s. 
This stage included all verbs that occurred in previous stages plus new 
ones.4 

 
As shown in Figure 1, the size of the network was 30 x 25 nodes for the 
phonological map and the semantic map, and 15 x 10 nodes for the phonemic 
map. These numbers were chosen to be large enough to discriminate among 
the words and phonemes in the lexicon, while keeping the computation of 
the network tractable. For each training stage, the network was trained for 
50 epochs, which means that each verb in a given stage was presented to 
each map 50 times. 

 
 

2.3.  Association of lexical and grammatical aspect in DevLex-II  
 
An important rationale behind our simulations is for us to understand the 
role of linguistic input in guiding children’s acquisition of lexical and 
grammatical aspect. Here, we wanted to test whether DevLex-II, endowed 
with self-organization and Hebbian learning principles, is able to display 
learning patterns as the child does. Our networks receive phonological and 
semantic representations of input words based on actual adult speech along 
with phonemic sequence (morphology) information of these words. If the 
network is able to produce patterns like those we found in children’s speech 
on the basis of learning of the input, we can then conclude that self-organi-
zation and Hebbian learning provide the necessary kinds of mechanisms that 
drive the formation of patterns in children’s acquisition. In this way, our 
modeling enterprise sheds light on the mechanisms that underlie the learning 
process. 

                                                        
4  Bare verb forms were excluded from our simulations, as well as irregular past 

tense forms and non-verbs. Exclusion of these forms simplifies the simulation 
task and makes the analysis more tractable. Our major goal here is to demon-
strate whether the use of verbal suffixes is correlated with the lexical aspect of 
verbs, and as such our simulations focused on suffixed verbs. 
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Table 1 (adapted from Table 2 of Zhao & Li, in press) provides a sum-
mary of the major patterns from the DevLex-II models, according to the 
tense-aspect suffixes the model produced at different learning stages. The 
table presents the results of the networks’ production of three suffixes,  
-ing, -ed, and -s, with three types of verbs, activity, telic and stative.5 The 
results were based on the analysis of the networks’ production ability; that 
is, how semantic representations induce activations on corresponding feature 
map (phonemic sequence map in DevLex-II) through associative pathways. 
The analysis was done by inspecting the nodes that each verb on the seman-
tic map activated, after the network had been trained for a specified number 
of epochs at each stage (50 epochs for DevLex-II).  

The testing of DevLex-II’s word production ability is as follows. At the 
end of each training stage, verb types in the lexicon of the current stage are 
presented to the semantic map one by one. For a verb type, its best matching 
unit or BMU on the semantic map is found, and in turn this node propagates 
its activation to the output sequence map through the associative links. Sev-
eral nodes in the sequence map become activated sequentially as winners 
that represent the word’s phonemes. Then the network checks to see if 
every node is the BMU of a unique phoneme, according to the Euclidean 
distance between its input weight vector and the feature representation of 
every phoneme. If it is, the phoneme closest in Euclidean distance to the 
current winner becomes its retrieved phoneme; if it is not, the pronunciation 
of this phoneme has failed. Finally, the pattern of the retrieved phoneme 
sequence is treated as the output of word production. When the retrieved 
phonemic sequence matches up with the actual word’s phonemic sequence, 
we say that the word has been correctly produced. For example, if the word 
kicking is shown to the semantic map, correct production occurs only when 
the consecutively activated nodes on the output phonemic map are the 
BMUs for /k/ // /k/ // // in this particular sequence. 

 

                                                        
5  Our analyses below deviate slightly from a strict five-way classification, because 

accomplishment and achievement verbs are often difficult to separate without an 
extensive analysis of the sentence and speech context. Thus in what follows telic 
verbs include both accomplishments and achievements. 
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Table 1. Percentage of use of tense-aspect suffixes with different verb types across 
input age groups in DevLex-II’s production and in parental input data (in-
cluding verbs with multiple suffixes) 

TENSE-ASPECT SUFFIXES 

Age 1;6 Age 2;0 Age 2;6 Age 3;0 

VERBS -ing -ed -s -ing -ed -s -ing -ed -s -ing -ed -s 

Network Production             
Activity 73 0 29 69 27 33 61 24 35 62 30 37 
Telic 27 75 14 21 53 28 32 62 27 31 62 26 
Stative   0 25 57 10 20 39   7 14 38   7   8 37 

Parental Input Data             
Activity 63 23 29 62 26 26 63 22 33 60 29 35 
Telic 31 62 29 31 58 26 29 66 25 32 59 24 
Stative   6 15 43   7 16 48   8 12 42   8 12 41 

 
The results of Table 1 are highly consistent with empirical patterns observed 
in early child language: the use of imperfective aspect is closely associated 
with activity verbs that indicate ongoing processes, while the use of perfec-
tive aspect is closely associated with telic verbs that indicate actions with 
endpoints or end results. In particular, in early child English, the progres-
sive marker -ing is highly restricted to activity verbs, the perfective/past 
marker -ed restricted to telic verbs, and the third person singular -s restricted 
to stative verbs (Bloom, Lifter and Hafitz 1980; Brown 1973; Clark 1996; 
Shirai 1991). Our network, having taken in input patterns based on realistic 
parental speech, behaved in the same way as children do. For example, at 
Input Age 1;6, the networks produced -ing predominantly with activity verbs 
(73%), -ed overwhelmingly with telic verbs (75%), and -s with stative verbs 
(57%). Such associations were strong at all four stages (especially for -ing 
and -ed), but they tended to become weaker over time.  

Interestingly, when we analyzed the actual input to our networks (based 
on parental speech), we found similar patterns. Table 1 also shows the per-
centages of the use of suffixes with different verb types in the input data for 
DevLex-II. An analysis of the table indicates that in the input data there are 
also clear associations between -ing and activity verbs, -ed and telic verbs, 
and that these associations are strong throughout the four stages, as also 
found previously by Shirai (1991) and Olsen, Weinberg, Lilly and Drury 
(1998). The degree to which the networks’ production matches up with the 
input patterns indicates that DevLex-II was able to learn on the basis of the 
information of the co-occurrences between lexical aspect (verb types) and 
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grammatical aspect (verb morphology). This learning ability was due to the 
networks’ use of Hebbian associative learning in computing if the semantic, 
phonological, and phonemic properties of a verb co-occur and how often 
they do so. 

To see the data more clearly, we illustrate the patterns with Figure 26 to 
show the percentages of the use of suffixes with different verb categories in 
both DevLex-II’s productions (Figure 2a) and in parental input data (Figure 
2b) at Input Age 1;6. Comparing Figure 2a and 2b, we can see that the net-
work’s production patterns are consistent with patterns in the parental input 
data, but the network showed more restricted use of the suffixes rather than 
a verbatim replication of the input association patterns. 
 

 

Figure 2.  Percentages of the use of suffixes with different verb types at Input age 
1;6 in (a) network productions in DevLex-II, and (b) parental input 
data. Data are based on Table 1. 

 
 

2.4.  Structured semantic representations of aspect in DevLex-II 
 
Elsewhere we have proposed an account of semantic development as an 
emergent process in which semantic features are connected in a system to 
support lexical categories, like in the formation of semantic cryptotypes (Li 
& MacWhinney 1996; Li 2003; Li, Farkas & MacWhinney 2004; Hernandez, 

                                                        
6  Figures 2–4 in this chapter were adapted from Zhao & Li (in press). 
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Li, & MacWhinney 2005; see also Rogers & McClelland, 2004, for similar 
discussions). The basic idea is that a given verb may be represented with 
multiple linguistic features, and the features themselves often co-occur and 
overlap in different verbs. For example, the verb screw may be viewed as 
having both a meaning of circular movement and a meaning of binding or 
locking, and the verb zip may be viewed as sharing both the “binding/lock-
ing” meaning and the “covering” meaning. Moreover, both screw and zip in-
volve hand movements. Features may also vary in the strength with which 
they are represented in different verbs. For example, the verb wrap may be 
viewed as having the covering meaning. However, in some cases, the action 
of wrapping may also involve circular movements. Children may acquire 
such complex feature-to-verb relationships through statistical analyses of 
the co-occurrences of verbs with situational contexts, with other words, and 
co-occurrences of particular grammatical morphemes with semantic features 
(see discussion in Siegel and McKeown’s 2000 work reviewed in section 
1.2.2), leading to feature-based organization of verb categories. In the simu-
lations here, we provided our networks with verbs that are represented with 
multiple semantic/syntactic features (lexical co-occurrence constraints, ex-
tracted by WCD), and we wanted to see how categories of lexical aspect 
could emerge from the self-organizing learning process. 

A particularly useful property of self-organizing feature maps is that the 
statistical structures in the representations can be clearly visualized as activ-
ity bubbles or patterns of activity on a two dimensional map in a topogra-
phy-preserving structure. Given that DevLex-II represented semantic infor-
mation from the high-dimensional space of verb usage in parental input, we 
hypothesize that verbs with similar aspectual properties should cluster to-
gether on the feature map. Figure 3 present a snapshot of DevLex-II’s self-
organization of the semantic representations of verbs (with suffixes) at the 
end of the learning process (i.e., Stage 4, Input Age 3;0).   
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Figure 3.  Emergent semantic representations in DevLex-II after Input age 3;0. 
Differently shaded regions indicate different aspect categories corre-
sponding to different suffixes -ed, -ing, and -s. Within each category, 
verbs with the same lexical aspect are often grouped together; see text 
for discussion. 

 
An examination of this map shows that the network has clearly developed 
structured semantic representations that correspond to different lexical as-
pect categories. It formed clear clusters of verbs by mapping verbs with 
similar combination of semantic features onto nearby regions of the map. 
We can make several interesting observations on the basis of these results:  
 
(1)  The most obvious structure of the map is that the words can be roughly 

divided into three main clusters according to the suffix that a verb stem 
takes, -ing, -ed, or -s (see Figure 3);  

(2)  Within each cluster, there are also groups that correspond to categories 
of lexical aspect such as telic verbs, activity verbs, and stative verbs. 
For example, towards the lower left-hand corner of the larger part of the 
-s cluster (the light gray area), stative verbs, like loves, knows, likes, 
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wants, and needs are mapped to the same region. Another example can 
be found in the -ing cluster (the area without shading): although most 
verbs clustered in this area are activity verbs such as working, sitting, 
crawling, walking, sleeping, etc., there is also a cluster of telic verbs (at 
the middle-to-lower portion of the map) such as wiping, fixing, hitting, 
putting, cutting, throwing, making, and getting; 

(3)  The distribution of lexical aspect is closely related to the distribution of 
grammatical aspect. Not only it is the case that the -ed cluster contained 
mostly telic verbs and the -ing cluster mostly activity verbs, but also 
telic verbs that take -ing were closer to the -ed cluster (e.g., going, 
jumping, messing, picking and cleaning, all bordering the -ed cluster);  

(4)  Verbs with the same stem but different suffixes are also often mapped 
to regions not far away from one another, for example, fixing and fixed, 
pushing and pushed, turns and turned at the middle area of the map, 
and playing and played at the lower right corner of the map.  

 

 

Figure 4.  Classification rates calculated by a 5-NN classifier according to lexical 
and grammatical representations of the verbs in DevLex-II’s semantic 
map. Classifications are based on: (a) the suffix that a verb stem takes: -
ing, -ed, or -s; (b) the lexical aspect of the verb: activity, telic, or stative. 
The error bars indicate the standard deviations based on 5 trials.  

 
 



264    Ping Li and Xiaowei Zhao 

The emergence of structured semantic representations in our model can also 
be verified by a simple method called k-nearest neighbor (k-NN) algorithm 
(Duda, Hart & Stork 2000). As a classical method in the field of pattern 
recognition for classifying objects into different classes, the basic idea of k-
NN is to predict the class of a point in a dataset according to the most fre-
quent class label of its k nearest neighbors. Implementing this method in our 
semantic map (see also Li, Farkas & MacWhinney 2004), we can evaluate if 
a verb in our lexicon was mapped to a node close in Euclidean distance to 
other verbs belonging to the same class. This allows us to have a rough idea 
of the overall compactness of different lexical classes. Here, we conducted a 
5-NN analysis of verb representations on the semantic map according to the 
suffix a verb stem takes, -ing, -ed, or -s. As shown in Figure 4a, the semantic 
map has developed clear clusters for different suffixes: for the category of -
ing, the classification rate is about 92%, which means that 92 percents of 
verbs suffixed with -ing are located within a nearest neighborhood according 
to k-NN; for the categories of -s and -ed, the classification rates are 88% and 
60%, respectively. We also conducted a 5-NN analysis of the verbs accord-
ing to their lexical aspect properties: as shown in Figure 4b, the classifica-
tion rates for activity verbs, telic verbs, and stative verbs are 61%, 41%, and 
34%, respectively. The relatively low classification rates of the verb catego-
ries, compared with those of suffix categories, indicate that the organization 
of verb meanings according to lexical aspect is subordinate to the organiza-
tion of verb suffixes on the map. In general, these quantitative analyses are 
consistent with our visual analyses of the semantic maps. 

The above observations lead us to conclude that the map has formed 
structured representations for grammatical aspect markers, such as -ed, -ing, 
-s, and that the interaction between grammatical aspect and lexical aspect is 
reflected in the correlation between grammatical morphology and verb 
types, and in the categories of lexical aspect such as activity, telic, and 
stative. The results from our modeling offer a new way of thinking about 
the representation of lexical aspect and its interaction with grammatical as-
pect. Verbs in a lexical aspect category form complex relationships, in that 
they vary in (1) how many linguistic features are relevant to the category, 
(2) how strongly each feature is activated in the representation of the cate-
gory, and (3) how features overlap with each other across category mem-
bers. For example, spill may be viewed as indicating both a punctual and a 
resultative meaning; close may involve both a change of state and a comple-
tive meaning; and the feature "punctual" may be represented more strongly 
in jump than in fall: in a natural setting a single jump occurs instanta-
neously, whereas falling need not (e.g., we could still say that a leaf fell 
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from a tree even if it drifted down slowly).7 With varying degrees of con-
nections from semantic features to verb forms, verbs can form clusters or 
categories that differ overall in lexical aspect. Traditional analytical methods 
from linguistics and psycholinguistics are much less effective in dealing 
with these complex semantic relationships (but see Siegel and McKeown’s 
recent attempt to combine different linguistic indicators, reviewed earlier). 
By contrast, neural network models that rely on distributed feature repre-
sentations and nonlinear learning are ideally suited to accounting for the 
properties of feature overlapping and weighted feature composition. Devlex-
II provides a clear example for how we may solve complex semantic prob-
lems via weighted feature composition (see also Li & MacWhinney 1996; 
Li 2003 2006; Li, Farkas & MacWhinney 2004).  

 
 

3.  Conclusion 
 
In this chapter, we presented an overview of the computational models of 
the expression and acquisition of temporality in languages. For the issue of 
tense, we provided a brief introduction to computational modeling of chil-
dren’s acquisition of the English past tense, and the heated debate on single 
versus dual mechanisms revolving around this issue. For the issue of aspect, 
we reviewed a few computational models of aspectual classification, and 
introduced in detail our DevLex-II model for simulating aspect acquisition 
in languages. Our review clearly shows that the expression and acquisition 
of aspect are very complex processes that depend both on the verb’s internal 
semantic meanings about temporal concept and on the syntactic features of 
the sentence where the verb occurs. Our DevLex-II model successfully 
simulates the acquisition of lexical and grammatical aspect, and provides 
insights into issues regarding the role of linguistic input, the emergence of 
lexical categories of verbs, and the development of prototypical to non-
prototypical associations.  

Self-organization and Hebbian learning in our model are two important 
computational principles that can account for the psycholinguistic processes 
in the acquisition of lexical and grammatical aspect. Our simulations dem-

                                                        
7  To see this, in Figure 3, we can find that the word jump, with its progressive 

marker -ing, is much closer than falling to the -ed cluster. Note that jump can 
also be construed iteratively, so that jumping refers to a series of jumps, which is 
why we may see that children use jumping more frequently than jumped in natu-
ral speech. 
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onstrate that the network is able to display patterns of association as ob-
served in empirical acquisition studies, on the basis of its analyses of input 
characteristics. In particular, self-organization of the semantic structure of 
verbs leads to the formation of lexical aspect categories and grammatical 
aspect categories, on the basis of the network’s analysis of the complex fea-
ture-to-verb and verb-to-morphology relationships in language use. In addi-
tion, our model clearly shows that simple but biologically plausible com-
putational principles in self-organizing neural networks can account for em-
pirically observed patterns in children’s acquisition of lexical aspect and 
grammatical morphology, without a priori stipulations about the structure of 
meaning or concept.  

Contributing to the debate on single versus dual mechanisms for learn-
ing, our model also specifically suggests that the learning of grammatical 
suffixes is not simply the learning of a rule (such as adding -ing or -ed to a 
verb to mark the progressive aspect or the perfective aspect), but the accu-
mulation of associative strengths that hold between a particular suffix and a 
complex set of semantic features distributed across verb forms (which sup-
port the emergence of a lexical aspect category). This learning process can 
be best described as a statistical, probabilistic process in which the learner 
implicitly tallies and registers the frequency of co-occurrences (strengthen-
ing what goes with what) and co-occurrence constraints (inhibiting what 
does not go with what) among the semantic features, lexical forms, and 
tense-aspect suffixes. The co-occurrence-and-constraint process is clearly 
modeled in our network by Hebbian learning of the associative connections 
between forms and meanings (see also a detailed description in Zhao & Li, 
in press). 

To conclude, the models we reviewed here clearly serve to demonstrate 
the utility of computational modeling (especially connectionist modeling) 
for unraveling mechanisms underlying the expression and acquisition of 
tense and aspect in languages. With the rapid development of computing 
techniques and the advancement of computational modeling, we are hopeful 
that the detailed cognitive and psycholinguistic mechanisms can be clearly 
revealed in the fields of language acquisition, language representation, and 
language processing.  
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