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Empirical evidence has accumulated that regularity and consistency in
orthography-to-phonology correspondence both affect the processing and
acquisition of Chinese characters, and that they interact with character frequency
in complex ways. However, despite growing interests in the Chinese
orthography, few previous studies have systematically analyzed these effects on
a large scale, or have modeled the acquisition process using connectionist
networks. In this study, we set out to analyze a realistic character corpus as
learned by children in Chinese elementary school, in order to evaluate the
degree to which corpus analysis can inform us of the roles that regularity,
consistency, frequency, and their interactions play in children’s acquisition of
Chinese characters. We further modeled character acquisition in a self-
organizing connectionist network, developing orthographic representations on
the basis of our analysis of character properties in a large-scale character corpus.
Our model is able to faithfully capture the orthographic similarities of Chinese
characters, and moreover, display effects of regularity, consistency, character
frequency, and the complex interactions among them, matching up well with
available empirical evidence on children’s acquisition of characters during the
elementary school years.

How do children acquire Chinese characters with its logographic
orthography? Chinese characters distinguish themselves from alphabetic letters
in that the basic orthographic units map mostly onto meaningful morphemes
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rather than spoken phonemes, and therefore a comparison between Chinese
and other written languages helps to identify both language-universal and
language-specific aspects in the processing and acquisition of orthography.
Because characters and meanings correspond in a phonologically non-
transparent way in Chinese, a conventional wisdom is that Chinese characters
must be learned by rote memory. Empirical psycholinguistic studies, however,
have led us to reject this misconception (see Hu & Catts, 1998; Leong, n
press; McBride-Chang & Zhong, in press; Shu & Anderson, 1998; Shu,
Anderson, & Wu, 2000; Siok & Fletcher, 2001; Yang & Peng, 1997). These
studies indicate that the awareness of the phonological structure of words and
morphemes is important in the acquisition of Chinese characters.

In spite of growing interests in the Chinese orthography and its acquisition,
there have been few systematic, large-scale, analyses of the properties of the
characters that children acquire over time, and there has been no research in the
modeling of the acquisition process, in contrast to what has been done in
English (see review below). In particular, few empirical studies have
systematically examined the complex ways in which regularity, consistency,
and frequency interact in the acquisition of Chinese characters, effects that are
shown to affect the acquisition of alphabetic writing systems. The present
study attempts to fill this gap. Our particular focuses are to examine corpus
characteristics in textbooks learned by school children and to incorporate such
characteristics into computational models that can further inform us of the
acquisition processes.

Properties of Chinese Characters and Chinese Phonograms

The first salient visual feature to a foreign eye is that Chinese characters are
square shaped. In contrast to English-speaking children’s letter-exercise books
with lines, Chinese pupils’ character-exercise books are made of pages of
grids, and the model characters are displayed within the grids — each stroke of
‘the character should be aligned exactly relative to the four sides. Much of the
elementary school years of the child is spent on “crawling through the grids”,
i.e., practicing the writing of Chinese characters.

Despite years of practice, a Chinese-speaking child by the end of the
elementary school years would still have acquired only a small portion
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(approximately 3,000) of the large number of characters (an estimate of up to
54,600 according to the Hanyu Da Zidian, a comprehensive Chinese character
dictionary, Hanyu Da Zidian Commission, 1990).! Chinese characters are
complex, with respect to both the internal structure of each of the components
that make up a character, and the structural hierarchies in which these
components are assembled into a character (see later discussion for details). In
addition, the relationships between sound and meaning in characters are also
complex: although many characters are derived from pictographs, in modern
Chinese a large portion of characters are the so-called phonograms that do
relate to the character’s pronunciation in some way. Phonograms are typically
made of two parts (often called “radicals”), the phonetic part (simply called
“phonetic” below) guiding the pronunciation of the character and the semantic
part indicating the categorical meaning of the character. However, the phonetic
part provides no reliable pronunciations for the character, and the semantic part
provides only an approximation to the semantic category to which the
character might be related.

Nevertheless, the appearance of phonograms is an important landmark in the
history of Chinese characters and it has significant implications for the learning
of characters (Peng & Jiang, in press). Modern Chinese has moved from an
early dominance of pictographs (such as H “fields”) to a dominance of
phonograms in modern eras. There are 5,631 phonogram characters,
accounting for 81% (Li & Kang, 1993) of the total 7,000 frequent characters
(National Language Commission of China, 1989). According to Shu, Chen,
Anderson, Wu, and Xuan’s (2003) analysis of the “School Chinese Corpus”
(Which contains 2,570 characters used in the elementary school textbooks in
Beijing), about 74% of the Chinese characters taught in elementary schools are
phonograms. Given the prominence of phonograms and their
representativeness in Chinese orthography, it is important for us to understand
the functions of these characters and the processes by which they are acquired.
In this paper, we focus on children’s acquisition of phonogram characters.

Although the phonetic of a phonogram provides no reliable pronunciations

1
However, the 3000 most frequent characters account for nearly 99% of all
characters commonly used in daily life, according to one estimate (Sun, 1998).
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for the whole character, it may relate to the pronunciation of the character in
one of three ways: (a) Regular: the whole character is pronounced the same as
the phonetic in isolation, that is, the same as the phonetic when it is being used
as an independent character - note that many phonetic parts can act as
independent characters by themselves; for example, “i&/qingl/’ and “ &
/qging1/’. (b) Semi-regular: the whole character is pronounced partly as the
phonetic, with a different tone (e.g., “if/ging3/” and “FHlgingl/’), a different
onset (e.g., “H&/jingl/” and “FH/qingl/”), or a different final (e.g., “VL/shal/
“and “J/shao3/’). (c) Iregular: the whole character is pronounced completely
differently from the phonetic (e.g., “¥&/cail/” and “%F/qing1/’). These patterns
of regularities or irregularities in the pronunciations of phonograms influence
the recognition and processing of Chinese characters, a phenomenon known as
the regularity effect in the literature.?

A related phenomenon in the processing of Chinese characters is the so-
called consistency effect. Consistency here refers to the degree of consistency
in the pronunciation of the group of characters that share the same phonetic
component. There are basically two possibilities: (a) Consistent: all characters
that share the same phonetic are pronounced the same as the phonetic itself
(e.g., 18, 4&, &, P&, are all pronounced as /huang2/); (b) Inconsistent:
characters that share the same phonetic could be pronounced differently, with
some taking the pronunciation of the phonetic, while others not (e.g., {&
Iqingl/, %@/caill). Within this latter category, the degree of inconsistency can
also vary, such that in some cases only a single character or a few characters
deviate from the pronunciation of the majority but in other cases each character
may have a different pronunciation (see later discussion on computing different
degrees of character consistency). These patterns of consistency or
inconsistency in the pronunciations of phonograms also influence the
recognition and processing of Chinese characters.

Regularity and consistency of character pronunciations, along with the
frequency of use of characters, are the three major variables that have been

2 This regularity effect is different, but comparable to the regularity effect studied in
alphabetic languages. Regularity in those languages typically refers to the degree of
consistency in the grapheme-to-phoneme correspondence.
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repeatedly examined in the adult psycholinguistics context. In a pioneering
work, Seidenberg (1985) found that the phonetic in Chinese characters
provides cues to help identify a character’s pronunciation, as compared with
non-phonetic in characters. This facilitation, however, appeared to hold only
for low-frequency characters but not for high-frequency characters. Seidenberg
interpreted this as suggesting that high-frequency characters are recognized on
a whole-character basis, while low-frequency characters are processed through
individual components in smaller units. Other studies that investigated the
interaction between regularity, consistency, and frequency include Fang,
Homg, and Tzeng (1986), Hue (1992), Yang and Peng (1997), Perfetti and
Zhang (1991), Shu and Zhang (1987) (see Peng & Jiang, in press, for a
summary). But how do these variables impact on children’s acquisition of
characters in Chinese? Relatively fewer studies have been designed to directly
address this question. In what follows, we first provide an overview of
previous research relevant to this question, and then present our corpus analysis
on the effects of regularity, consistency, and frequency in character acquisition.

Effects of Regularity, Consistency, and Frequency: Corpus Analyses

Previous Empirical Research

Several empirical studies have examined regularity effects in children’s
acquisition of Chinese characters. Shu, Anderson, and Wu (2000) showed that
children in Grades 2, 4, and 6 display regularity effects when they are required
to write down the pronunciations of Chinese characters: they perform better on
regular characters whose pronunciation is the same as their phonetic in
isolation, than on irregular characters whose pronunciation is different from
their phonetic. When children see unfamiliar characters, they often exploit the
pronunciation of the phonetic as a possible reading of the whole character, and
this ability increases with school grade (see also Shu and Wu, in press). Ho and
Bryant (1997) reported similar findings for Grade 1 and 2 children in Hong
Kong. Yang and Peng (1997) also found regularity effects in children’s speed
of flaming characters: children in Grade 3 name regular characters more
rapidly than irregular characters, but by Grade 6, they name both types of
characters equally quickly. Frequency also plays an important role in children’s
character naming as it interacts with the regularity of characters. For example,
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children display smaller regularity effects on characters of high frequency but
show larger regularity effects on characters of low frequency (Shu, Anderson,
& Wu, 2000).

In addition to regularity effects, researchers have also examined consistency
effects in Chinese children’s acquisition of characters. Tzeng, Zhang, Hung,
and Lee (1995) studied children in Taiwan by asking them to read three types
of pseudo-characters: those with only regular neighbors, those with only
irregular neighbors, and those with both regular and irregular. Children were
found to make more regular responses in the regular-only condition than in the
irregular-only condition. The results suggest that children do not simply name
a character based on its phonetic, but also take into consideration the
pronunciations of other characters sharing the same phonetic (i.e., consistency
of the neighbors). Yang and Peng (1997) found consistency effects in the
naming of characters by both Grade 3 and Grade 6 students, suggesting that as
vocabulary increases, more and more characters in the repertoire share the
same components, which influences children’s processing of character reading.
This finding was further confirmed in a study by Shu, Zhou and Wu (2000)
who showed that young children develop phonological awareness of the
structures of characters and the functions of the phonetic and the semantic
radical. Some 4™ graders already start to acquire the awareness of the
consistency of the phonetic, and by Grade 6 this awareness becomes stronger.
The sensitivity to character consistency continues to increase until the college
level, according to Shu et al. (2000).

Most of the above-mentioned studies of character acquisition are
experimental in nature, looking at a very selective set of characters in a highly
controlled manner. While this type of experimental research is undoubtedly
important in unraveling the influences of regularity, consistency, and frequency
in character acquisition, it falls short of a complete picture of the thousands of
characters that are actually learned by children in the early school years. In this
study, we have taken on the task of building a corpus that includes all the
characters in elementary school textbooks, and have conducted our analyses on
the basis of this corpus. In what follows, we discuss the methods used to build
the corpus, and the detailed analyses of phonograms in the corpus with respect
to regularity, consistency, and frequency.
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Method

The elementary school textbooks for first through sixth grades (Beijing
Academy of Educational Sciences, 1998) are the primary source of our corpus
analyses. In adopting these textbooks as the basis of our analysis, the present
corpus study differs from previous corpus studies in significant ways. In
previous studies, only character type information has been considered (without
character token frequency), and researchers usually use character frequency
based on adult corpus as an approximation to character frequency used by
children (a situation parallel to the use of the Kucéra-Francis word frequency to
predict vocabulary acquisition in children, which does not work well; see
Goodman, Dale, & Li, 2002). In this study, we constructed our corpus based on
both type and token information of characters in the school textbooks used in
classroom teaching. Thus, the information we get from this corpus (including
character frequency and distribution of character regularity and consistency)
provides a more realistic measure of children’s knowledge, which is also
important for simulations as seen in our modeling study reported below. Our
study can also be compared with previous studies in terms of the distributions
of regularity, consistency, and other features of Chinese characters by the
comparison of child-based and adult-based corpora.

The total number of characters (tokens) in the Beijing textbooks is 160,342,
and the number of characters (types) is 3306. In other words, an elementary
school student will learn an average of 3306 characters during the six
elementary school years, covering about 98.64% of the total characters
commonly used (e.g., in a 100-million word adult corpus; Sun, 1998). The
characters that appear in these textbooks were tagged with respect to the
following dimensions (Shu, Chen, Anderson, Wu, & Xuan, 2003): character
configuration, character pronunciation, character frequency, age (grade) of
acquisition of character, radical (phonetic) configuration, pronunciation, and
position in the character, phonetic type (whether the character has the same
pronunciation as the phonetic), and character consistency (whether all
f:haracters taking the same phonetic have the same pronunciation). Such
information, especially frequency, phonetic type, and consistency, is valuable
to our understanding of the factors that affect children’s acquisition of

characters.
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Results

Phonogram Profiles

The total number of phonograms (types) in the corpus is 2477, accounting
for 75% of all character types used in the corpus, and the total number of
phonogram tokens is 77,729, accounting for 48% of all character tokens used
in the corpus. First, we counted the number of phonograms for each school
grade, and computed the proportion of new phonogram characters that students
would learn in each grade. Second, we counted the number of phonograms
relative to the total number of characters that students used in each grade. Table
1 and Table 2 present the results of this analysis.

Table 1 shows that the total number (type) of new characters and new
phonograms for each grade. It can be seen that although the absolute number
of new characters and phonograms decreases after Grade 3, the proportion of
phonograms relative to the number of new characters linearly increases across
school grades. Table 2 also shows that although the total number of

Table 1. Number of new characters and phonograms for each school grade

18t 2nd 3rd 4lh 5th 6th
New characters 667 697 759 441 410 332
Phonograms 400 480 586 376 349 286
Proportion .60 .69 a1 .85 .85 .86

Table 2. Types and tokens of characters and phonograms for each grade (cumulative)

Ist 2nd 3rd 4th 5th 6th

Token

Number of characters 3910 11485 21369 26295 41214 56069
Number of phonograms 1801 5725 10350 12782 19846 27070
Proportion 46 .50 A48 49 48 A48

Type

Number of characters 667 1260 1904 2101 2375 2630
Number of phonograms 400 803 1281 1457 1673 1870
Proportion .60 .64 .67 .69 .70 a1
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phonograms (tokens) remains constant relative to the total number of
characters (around 48-50%), the types of phonograms relative to the types of
characters steadily increase. These two tables indicate clearly that phonograms
play an increasingly important role in character learning as the child progresses
through elementary school.

Frequency of Phonograms

As seen in Table 1 and Table 2, both the proportion of new phonograms and
the proportion of phonogram types increase with school grades. The number of
non-phonograms (types), then, is relatively small. However, the number of
non-phonogram tokens is more than half of the total character tokens used in
each grade (around .52). Thus, the low type frequency and high token
frequency of non-phonograms shows that it is important for us to have a clear
picture of the frequency of characters used in the textbook corpus. We divided
the frequency of characters in the Beijing textbook into five categories,
according to the following criteria: high (character use > 50 in the corpus, or >
300 per million), medium-high (20-49, or 120-300 per million), medium (10-
19, or 50-120 per million), medium-low (3-9, or 15-50 per million), and low (<
2, or < 15 per million).

Fig. 1 shows the frequency profile of the characters learned in each grade. It

100%
80% I I l l
[] High
2 60% |
= 7 Mediumhigh
40% B Medium
M Mediumlow
20% N Low

1st 2nd 3rd 4th
Grade
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Fig1, Frequency profile of the characters learned in each grade
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Fig. 2. Proportion of phonograms in different frequency range of characters

indicates that the characters children learn in lower grades are of relatively
higher frequency, whereas in later grades they meet more and more lower
frequency characters in the textbooks. Fig. 2 indicates that more phonograms
are in the low'to medium frequency categories, with relatively fewer
phonograms in the high and medium-high categories. Given the predominance
of phonograms (75% of all characters), it comes as a surprise that a large
number of phonograms is relatively low in frequency of use. On the other
hand, this means that only in higher grades will children meet more and more
phonograms, given the overall frequency profile of the high- versus low-
frequency characters introduced in the textbooks.

In addition to the number and frequency of phonograms learned in each
grade, school children are sensitive to the regularity and consistency of
characters in the acquisition of phonograms. We discuss each of these below.

Character Regularity
In the discussion of the properties of Chinese characters, we divided
characters into three categories with respect to regularity: (a) regular, in which
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the whole character is pronounced the same as the phonetic in isolation, (b)
semi-regular, in which the whole character is pronounced partly as the
phonetic, and (c) irregular, in which the whole character is pronounced
completely differently from the phonetic (see examples discussed earlier). This
last category also includes phonograms that have multiple pronunciations, and
phonograms that have lost their phonetic cues when simplified.

Table 3 and Fig. 3 present the relative distribution of these three categories,
and their distribution in each grade according to the use of these characters in
the corpus. It shows that the percentage of regular characters increases but the
percentage of irregular characters decreases across school grades. The
percentage of semi-regular characters remains roughly the same across grade.
These contrasting patterns for regular versus irregular characters indicate that
as children get older they are exposed to more regularities in the character, thus
promoting their awareness of the orthography-to-phonology correspondences

Table 3. Number and proportion of regular, semi-regular and irregular characters

Regularity Regular Semi-regular Irregular
Number of characters 619 1017 841
Proportion of characters 25 41 34

0S5

x .
\
041 a\/ X\X
0. ° >
03 o P O el ¥ — ¢— Regular
—X——  Seni-regular

02+ -- O - - Irregular
0.1f

ob—1 I I L L |
1st 2nd 3rd 4th 5th 6th

Fig. 3. Proportion of regular, semi-regular and irregular characters by grade
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Fig. 4. Proportion of regular, semi-regular and irregular characters by frequency

(Shu & Wu, in press).

A number of studies have found that regularity also interacts with frequency
in the processing and recognition of Chinese characters (Seidenberg, 1985;
Perfetti & Zhang, 1991; Peng & Jiang, in press). In particular, regularity is
transparent for low-frequency characters, but less so for high-frequency
characters. How is this interaction reflected in the corpus? We analyzed the
relative proportion of the three categories of regular and irregular characters
with respect to their frequency of use for each grade, as shown in Fig. 4.

Fig. 4 confirms the interaction between regularity and frequency in our
corpus. A relatively smaller proportion of regular phonograms are in the high-
frequency range, but the proportion increases as frequency decreases. In
contrast, irregular and semi-regular phonograms show no such tendency for
high versus low frequency. In fact, there are more irregular phonograms in high
frequency than in low frequency. These patterns are consistent with the results
in Fig. 3, in that early on children are unlikely to be highly sensitive to the
regularity of characters, owing both to the relatively small number of regular
phonograms and to the relatively low frequency of these characters.

Character Consistency
As discussed earlier, Chinese characters can be classified into two categories
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with respect to the consistency of pronunciation: (a) consistent, in which all
characters that share the same phonetic are pronounced the same as the
phonetic itself, and (b) inconsistent, in which characters that share the same
phonetic are pronounced differently. Character consistency is tied to the
notion of character family. We define a set of characters as in the same
“family” if they share the same phonetic (including the phonetic itself as an
independent character). For example, 12/huang2/ belong to a consistent
family because all characters in this family take the same phonetic 5 (J&|,
18, 48, J8 (2, 78, 8, 52, &, #f) and have the same pronunciation as the
phonetic (/huang2/). By contrast, the character /tai2/ belongs to an
inconsistent family because all characters in this family take the phonetic /4
A, but have different pronunciations (¥4/tai2/, fa/taill, £itai2l, &/tai2l, 35
Itai2/, Brai2/, S/rai2l, i Ivi2l, Iyi2l, 18lyi2l, Wlyi2l, hgishi3l, iGizhidl, &
fye3/).

In elementary school, the number of character families to be learned differs
from grade to grade, and therefore the same family may contain different
numbers of members for children in different grades. Thus, our corpus
analysis, in contrast to other empirical research, counts the consistent families
or members only for children in specific grade, not for children in all grades.
For example, the character “{&” /gingl/ may be a consistent character for
Grade 1 children, because the children so far have learned only the characters
“Y&/qingl/” and its phonetic “#/qing1/”. However, the same character
becomes an inconsistent character for Grade 2 children, because they now have
leamed more characters like “ $&/cail/”, and “i&/ging3/.

Table 4 shows that as school grades increase, the number of members in
each phonogram family (maximum or mean) also increases, as well as the
absolute number of character families across grades. The “maximum number
of members” refers to the characters families that have the largest members in

Table 4. Number of phonogram families in each grade

Grade ]st ond 3rd 4th 5th 6h
Family 123 287 478 566 632 687
Max. members 7 9 12 12 14 17
Mean members 249 297 3.23 3.49 3.76 3.94
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one family, and the “mean number of members” refers to the average family
sizes of all the character families.

Although the number of character families and the members in a family both
increase, a detailed analysis of the consistent character families indicates that
awareness of character consistency may be a slowly developing process. Table
5 shows the number of consistent and inconsistent groups with the character
families for each grade. By Grade 6, the number of consistent families is 108,
accounting for only 16% of the total number of character families (687), and
the majority of these families have only two or three members. This result
differs from that of regularity - in the regularity case, regular and semi-regular
characters account for nearly 70% of the phonograms to be learned by Grade 6
(cf. Fig. 3).

It can be seen from Table 5 that both consistent and inconsistent families
increase with grade. However, the absolute number of inconsistent families is
much larger than that of consistent families. This is because, as mentioned
earlier, as higher-grade children learn more characters, some consistent
families for earlier grades become inconsistent families for later grades. Thus,
elementary school children’s sensitivity to consistency may only gradually
develop. However, children may begin with a hypothesis that assumes that all
characters are consistently pronounced as the phonetic, especially when they
have learned only one or two characters in a family. Thus, earlier on they tend
to overgeneralize the use of the phonetic across all members of a family, as if
they had knowledge of character consistency (Shu & Wu, in press).

To summarize our corpus study, our analysis shows that there are many
inherent statistical properties of the characters that children are faced with in
the elementary school textbooks. These statistical properties would in many
cases promote children’s awareness to regularity, consistency, and frequency
effects in the characters. However, such awareness does not develop

Table 5. Consistency in character families for each grade

Grade 18t 2nd 3d 4t 5t eh
Consistent families 14 40 56 83 94 108
Inconsistent families 109 247 422 483 538 579
Total families 123 287 478 566 632 687
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automatically, or uniformly, but rather, they depend on the specific dimension
of properties and the interaction of these properties with each other and with
the learning system. In what follows, we discuss how a learning system, our
comnectionist model, may handle the task of learning the kinds of characters
that Chinese-speaking children encounter in elementary school, and how the
system can become sensitive to a number of factors that influence the learning
process, including regularity, consistency, and frequency of the characters.

Effects of Regularity, Consistency, and Frequency: Connectionist
Modeling

Connectionist Models of Reading in English and Chinese

Our corpus analysis of the profiles of Chinese phonograms learned by
elementary school children shows a number of important factors that affect
children’s acquisition of characters. But how does the learner incorporate these
factors in the process of acquisition? In other words, although the corpus
analysis shows the properties of the learning environment, we need to ask
about properties of the learner — in particular, what computational properties
allow the learner to handle the learning environment and display specific
leaming patterns in the process of character acquisition? In this section, we
present a connectionist model that can adequately address this issue.

Most previous connectionist models of reading have examined alphabetic
languages (particularly English), using feed-forward networks with the back-
propagation learning algorithm. Seidenberg and McClelland (1989) first
studied word reading for English monosyllabic words with a connectionist
network. Using distributed representations of word knowledge, they were able
to simulate word-reading processes from orthography to phonology. The
model succeeded in reading both regular and exception words in the
orthography-to-phonology correspondence, relying on a single connectionist
mechanism rather than two separate mechanisms using “dual routes”
(phonological route for regular words vs. lexical route for exceptions;
Coltheart, 1978). Their model accounted for a number of classical word
Mng effects, including word frequency, spelling-sound consistency, and the
Interaction between the two. Building on the Seidenberg and McClleland
model, Plaut, McClelland, Seidenberg, and Patterson (1996) examined word
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reading in normal and impaired situations. They pointed out that the original
model performed poorly on the reading of pronounceable nonwords (e.g.,
mave), and to account for nonword as well as word reading. Plaut et al. (1996)
developed orthographic and phonological representations that better capture
the structures of written and spoken forms of words. The new model was able
to read regular and exception words as the original Seidenberg and McClleland
model, but it also performed well on nonwords. Following these two models,
several other connectionist models of orthographic processing further
expanded the investigation into reading impairment (phonological and surface
dyslexia; e.g., Harm & Seidenberg, 1999) and the relationships between
orthography, phonology, and semantics in word reading (Harm & Seidenberg,
in press).

A common feature to the previous models is that they use empirical data
from normal adults as the basis (and target) for their modeling (e.g., word
frequency estimates from adult norms). Such an approach works well for
modeling word reading in adults, but would be problematic for modeling
orthographic acquisition in children. Children acquire words incrementally,
such that their vocabulary gradually increases along with age/grade. In the case
of Chinese, orthographic acquisition of characters goes hand-in-hand with an
increasing vocabulary. A model of children’s word reading needs to take into
account this property. In this study, we build our connectionist model on the
basis of our corpus analysis of the characters and their properties in the
textbooks that children learn from. Our approach thus should provide a better
approximation to the learning processes than a method based on adult corpus
analyses.

In contrast to previous models, our study also uses the “unsupervised”
learning algorithm. It is based on the architecture of self-organizing neural
networks, in particular, self-organizing maps (SOM; Kohonen, 1989, 1995). A
number of recent models have explored SOMs as viable models of language
representation and language acquisition, in both monolingual and bilingual
situations (Hernandez, Li, & MacWhinney, 2005; Miikkulainen, 1993, 1997;
Li, 2003; Li & Farkas, 2002; Li, Farkas, & MacWhinney, 2004). Although
significant progress has been made with previous models based on back-
propagation (as shown by the word reading models reviewed above), there
have been known limitations associated with these models as realistic models
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of human cognition, in particular, as models of language acquisition (see Li,
2003; Li, Farkas, & MacWhinney, 2004; MacWhinney, 2001 for discussion).
SOM relies on unsupervised leaming algorithms by which leamning proceeds
without explicit error-correcting signals as in back-propagation. Learning in
SOM is achieved by the system’s self-organization in response to the input.
During learning, the self-organizing process extracts an efficient and
compressed internal representation from the high-dimensional input space and
projects this new representation onto a 2-D topological structure (Kohonen,
1989, 1995). Several important properties of SOMs and related features make
such networks particularly well suited for our investigation.

Self-organization in these networks typically occurs in a 2-dimensional
topographical map, where each processing unit in the network is a location on
the map that can uniquely represent one or several input patterns. At the
beginning of leaming, an input pattem randomly activates a set of units on the
map that surrounds the best matching unit (the winner), according to how
similar by chance the input pattern is to the weight vectors of the units. Once
these units become active in response to a given input, the weights of the
winner and those of its neighboring units are adjusted such that they become
more similar to the input and these units will therefore respond to the same or
similar inputs more strongly the next time. Initially activation occurs in large
areas of the map (i.e., many units are active), but gradually learning becomes
focused so that only the maximally responding unit or units are active. This
process continues until all the inputs can elicit specific response patterns in the
network. As a result of this self-organizing process, the network gradually
develops concentrated areas of units on the map (the so-called “activity
bubbles”) that capture input similarities, and the statistical structures implicit in
the high-dimensional space of the input are projected to and preserved on
a2-D space in the map.

In an attempt to model the mental lexicon, Miikkulainen (1993, 1997)
connected several SOMs through associative links trained by Hebbian
!eaming, where each SOM is dedicated to a specific type of linguistic
l!fform'atiOn (orthography, phonology, or semantics). Hebbian learning is a
biologically plausible learning principle, according to which the connection
S_uength between two units is increased if the units are both active at the same
time (Hebb, 1949). In Miikkulainen’s (1997) model (the DISLEX model), all
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units on one map are initially connected to all units on the other map. As self-
organization takes place, the associations become more focused, such that in
the end only the maximally active units on the corresponding maps are
associated. Hebbian learning combined with SOM has strong implications for
orthographic acquisition: it can account for the process of how the learner
establishes relationships between phonological forms and orthographic forms
of words, on the basis of how often the two co-occur and how strongly they are
co-activated in the representation.

Although word reading and orthographic processing have been carefully
examined in English and other languages, due to the difficulty in representing
the complex structure of the Chinese orthography, very little modeling research
has been done for Chinese. There have been only two preliminary attempts so
far. First, Chen and Peng (1994) proposed a connectionist model of recognition
and naming in Chinese, using a standard feed-forward network. Their model
consisted of orthographic representations at the input layer, mapped to
phonological representations at the output layer. Orthographic representations
of Chinese characters focused on radical components and their structural
relationships in the character. A major success of the model was its ability to
show character frequency effects and to distinguish regular from irregular
characters in naming. A second, more recent model, the interactive
constituency model, was proposed by Perfetti and Liu (in press). Perfetti and
Liu were interested in building a more general model of reading in Chinese
rather than modeling specific effects in naming. Their model included four
different levels of interactive constituency: radical, orthography, phonology,
and semantics. The input units were 144 radicals that begin activation in
orthography, which then activate phonology or semantics of the characters.
One interesting pattern from their model was the oscillation effect: the onset of
inhibition of orthographically similar primes coincides with the onset of
facilitation of phonological priming. This effect matches with empirical
observations on the time course of orthographic and phonological priming
(Perfetti & Tan, 1998).

Although both models attest to the utility of connectionist networks to model
existing results, their methods in character representation and in network
architecture were rather crude. The first model was limited to specific naming
effects and it is not clear how it can be generalized to reading acquisition. The
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second model used a very limited vocabulary (204 characters) and it is not
clear how the model can scale up to a larger lexicon because of its localist
representation (i.e., one unit per character). In addition, both models were not
designed to encode the phonology of radicals, hence were unable to capture the
role that radicals play in character naming (and the effects of regularity by
frequency in naming). Finally, both models relied on the standard feed-forward
petwork architecture.

In this study, we present a model of the acquisition of Chinese characters, a
model that differs from previous ones in the following: (a) rather than relying
on adult norms, our model builds orthographic representations of Chinese
characters based on corpus analyses of the phonograms that children learn in
elementary school, (b) our model uses a self-organizing neural network rather
than a feed-forward network, and (c) our model attempts to connect empirical
patterns, corpus analyses, and computational mechanisms in Chinese, a non-
alphabetic language where the relation of orthography-phonology differs from
that in English. In Xing, Shu, and Li (2002), we presented preliminary results
that demonstrate the utility and promises of aspects of the model; in this study,
we extend the preliminary results to a larger-scale model based on corpus
derived from characters in elementary school textbooks.

Method

Network Architecture

The network architecture we used in this study is a self-organizing feature-
map model developed by Miikkulainen (1997), the DISLEX model. In
PISLEX, different feature maps are dedicated to different types of linguistic
information (orthography, phonology, or semantics), and are connected
ﬂnou@ associative links trained by Hebbian learning. To model orthographic
processing, an input pattern activates a group of units on the orthographic input
map, and the resulting activation propagates through the associative links and
eﬂl_lses an activity to form in the other map (semantic or phonological). The
it that has the highest activation in response to the input is the “winner”. This
process !eads to the adaptive formation of associative connections between the
maps. Fl_g- 5 presents a diagrammatic sketch of the model’s reading process,
from secing the orthographic representation of dog to the comprehension of the
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Fig. 5. Reading comprehension of dog in DISLEX (Miikkulainen, 1997; reproduced
with author’s permission)

word’s meaning (see Miikkulainen, 1997 for technical specifications). In our
simulations, we examine only the production process from orthography to
phonology in order to model character naming in the acquisition of
phonograms. Our network has not yet incorporated semantic information and
thus no comprehension component is included in this study.

To measure the success of our network, we computed the accuracy, after
each simulation, for the network’s representation of orthography, phonology,
and its naming ability, according to Miikkulainen’s (1997) standard measures.
The first two are accuracies of map representations (orthographic and
phonological) that quantify the proportion of characters that are uniquely
represented in the map. For example, if {2 and 4£ are mapped onto the same
node on the orthographic map, this is interpreted as evidence that the network
cannot differentiate between these two characters. On the other hand, if the
pronunciation of /huang2/ (tone 2) is confused with /huangl/ (tone 1), these
two pronunciations will be mapped onto the same node in the phonological
map. The third measure is on the association from orthography to phonology,
measuring the accuracy of the network’s naming ability. For example, if the
nodes with highest activations in both maps are consistent with each other
(e.g., I in the orthographic map and /huang?2/ in the phonological map), this is
interpreted as evidence that the network correctly names the character.

Note: Phonemes are
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Phonological Representation

A general property of Chinese characters is that one character corresponds to
one monosyllable in the spoken language. This property makes it relatively
simple for us to construct input representations for the phonology of characters

TaNe 6. Representation of Chinese phonemes by five phonological dimensions (D1-D5)

Phoneme  IPA D1 D2 D3 D4 D5
a A vowel — — low central
o o vowel — round mid back
e Y vowel — mid front
i i vowel — high front
u u vowel — high back
i y vowel — round high  front
b p unaspirated  bilabial stop — —
P p’ aspirated bilabial stop — —
m m unaspirated  bilabial nasal — —
f f unaspirated  labiodental fricative — —
d t unaspirated  front stop — —
t t aspirated front stop — —

~n n unaspirated  central nasal — —
1 1 unaspirated  central lateral — —
g k unaspirated  velar stop — —
k k* aspirated velar stop — —
l} b unaspirated  velar fricative — —
] te unaspirated  palatal affricate — —
q ct aspirated palatal affricate — —
x ¢ unaspirated  palatal fricative — —
z ts unaspirated  central affricate — —
c ts* aspirated central affricate — —
S s unaspirated  central fricative — —
zh & unaspirated  back affricate — —
ch ts* aspirated back affricate — —
sh S unaspirated  back fricative — —
r Z unaspirated  back retroflex — —
ng (] unaspirated  velar nasal — —
&r > vowel — mid central

: given in Pinyin, along with their corresponding International
Phonetic Alphabets (IPA).
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in that we need not consider multiple syllables. According to tradition in
Chinese linguistics, the monosyllable of each character consists of three parts:
initial (onset), final (thyme), and tone. The initial is usually a consonant. The
final consists of at least the nucleus vowel, sometimes with or without a medial
or an ending. The nucleus vowel may be one single phoneme or a diphthong
(two phonemes). Lexical tones are supra-segmental, imposed on the initial and
the final. In our representational scheme, we represent each phoneme
(consonant or vowel) by 5 dimensions or features, and each feature by the
phoneme’s articulatory properties, on a continuous scale from 0 to 1. The
overall method of representation is similar to PatPho, a phonological
representation scheme for English described by Li and MacWhinney (2002).

With this method we can represent all Chinese monosyllables with four
tones (a total of 1,335), with each syllable on a 30-unit feature vector. Table 6
lists the articulatory features we used to represent the Chinese phonemes.

Orthographic Representation

As mentioned earlier, Chinese characters are complex in at least two
respects: first, they are visually complex in terms of the numbet, the shape, and
the relative position of the strokes that make up the character, and second, they
are structurally complex in the hierarchies in which these strokes are assembled
into radicals, and radicals assembled into characters. For example, the
character “#F” can be divided into the radicals “#” and “{” in the first level.
The radical “{&” can be further divided into smaller components which could
also be radicals by themselves. At the same time, radicals are often
independent characters, in much the same way that a root can be an
independent word in English; for example, the radical “f#” by itself is an
independent character. One implication of these complex nestings in Chinese
orthography is that it is very difficult to accurately represent the orthographic
similarities of characters. Crucially, this complexity poses an obstacle to
modeling research because a simple decomposition of visual features is neither
feasible nor sufficient when the orthography is not alphabetic. Perfetti, Liu &
Tan (2002) localist representation did not solve the problem because it could
not be scaled up, and Chen and Peng’s distributed representations were specific
to the particular characters they used in training. One contribution of the
present study is our solution to character representation.
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. 'We constructed our character representations on the basis of a detailed
analysis of all the characters in the UCS Chinese Character Database
(Standards Press of China, 1994) with respect to the strokes, components, and
stractures of these characters. The UCS Chinese Character Database contains
information about the structure and components for each of the 20,902 Chinese
characters used in China, Japan, and Korea. This information includes the
hierarchically ordered sequences of each component when characters are
decomposed into smaller units of strokes. Other information includes
pronunciation of the character, first-level categorization of the character,
ginmber of radicals, number of strokes, and frequency of usage. The database
lists 560 basic radicals for the 20,902 Chinese characters, including each
character’s structural features, shape features, position of radicals, number of
radical strokes, etc. Most important, in our study we included information
about phonetics in phonograms as found in our school textbook corpus. This
imcluded the position of the phonetic in the character, whether the position of
the radical is fixed, and the relationship between the pronunciation of the
phonetic and that of the character. We also included information about the
frequency of each character that appears in our school corpus.

On the basis of our analyses of this database and the textbook corpus, we

wnmd each phonogram character with a 382-unit feature vector, along the
dimensions as depicted in Fig. 6.

Phonogram
character
Sound of Sound of the Orthographic
character phonetic properties

Lo Position Stroke

'% 6. Orthographic representation scheme for Chinese characters
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The first 30 units represent the sound of the character, while the second 30
units represent the sound of the phonetic. The remaining 322 units represent
the orthographic properties of characters, such as structure of radicals, shape of
radicals, position of radicals, feature of strokes, shape of strokes, and number
of strokes. The decision to include information about radicals and strokes in the
representation of Chinese orthography was based on behavioral work that
showed that the processing and learning of characters depends crucially on the
reader’s ability to decompose characters into radicals and smaller components
(Taft, in press; Shu, in press). In the Appendix we provide details on how we
coded these aspects into the orthographic representation of characters. With
this representation scheme, we are able to model some of the key properties
that are important in Chinese character acquisition. These include: (1)
phonological similarities among phonograms, (2) orthographic similarities
among phonograms, (3) positional features of the phonetic within phonograms,
(4) pronunciations of the phonetic in phonograms, and (5) relationships
between the pronunciations of characters and those of their phonetics.

Simulation 1: Modeling Regularity Effects

Materials

The basic training materials consisted of groups or families of Chinese
phonograms — characters that have the same phonetic. It is important to note
again that some phonetic components appear in many characters (large family)
and some appear in relatively few (small family). Because we are modeling
elementary school children’s acquisition, we allowed the number character
families to differ from grade to grade, and the same family may also contain
different numbers of family members at each grade level (see Table 7). We
randomly sampled phonogram characters from our textbook corpus for Grades
2, 4, and 6 to generate the basic training materials. Since the total number of
characters in the training for each grade is limited to 300, the percentage of
families sampled differs across grades: 50 percent for Grade 2, 13.5 percent for
Grade 4, and 9.2 percent for Grade 6. Selection of training materials mirror
introduction of characters to children. In particular, items are selected to
represent distribution of phonetic at particular grade levels. Characters are
selected (a) if they have been learned in or before this grade, and (b) if the
family includes all phonogram characters that have been learned before. For
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Table 7. Number of families sampled from Grades 2, 4 and 6 textbooks

S Family Grade 2 Grade 4 Grade 6
m;nbers Total Sampled Total Sampled Total Sampled
T | 503 100 560 60 565 48
w2 148 27 237 24 234 21
3 83 17 131 13 156 12
4 22 4 72 7 95 7
"5 19 3 53 6 72 6
6 12 2 24 3 41 3
7 4 1 21 2 38 2
8 1 0 7 1 14 1
9 1 0 10 1 11 1
=i 10 5 0 6 1
oae 11 2 0 7 1
BV 4 0 7 1
- >13 6 0
: Total 793 154 1126 117 1252 14

i

€ st
-

example, in grade 2 most characters have a phonetic that appears in only one
character (small family); by contrast, at grade 6 some characters have
phonetics that appear in 12 characters or more. Table 7 shows the composition
of our training materials in terms of character families.

Training
+ -Bach batch of characters corresponding to each grade was submitted to the
Betwark, mw for varying numbers of epochs for the self-organization of
Phomological representations and of orthographic representations (see details
W)- Upon training of the network, a phonological representation of a
w.as presented to the network, and simultaneously, the orthographic
epresentation of the same character was also presented to the network.
M self-organization the network formed an activity on the phonological
map In response to the phonological input, and an activity on the orthographic
rm Tesponse to the orthographic input. The phonological representation of
character was also co-activated with its orthographic representation. As the
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network received input and continued to self-organize on each map, it
simultaneously learned associative connections between maps through
Hebbian learning: initially, all units on the phonological map were fully
connected to all units on the orthographic map; as learning continued, only the
units that were co-activated in response to the inputs were associated. All
simulations were run with the DISLEX simulator (Miikkulainen, 1999) on a
Pentium 4 PC under the Linux environment.

The network was trained separately on 2, 4, 6 grade corpus samples, where
average family size as well as frequency varied across samples. Frequency was
modeled by the number of presentations of the input. The actual training time
(number of cycles) for each character is calculated with the following formula:

Training times in the network = frequency of usage in the textbooks x 20

For example, a character will be trained for 60 times, if it appears three times
in the textbooks. A pilot study shows that the network is able to learn the
pronunciation of characters in the training pool with about 350 epochs of
training. So, for a high frequency character which appears 18 times or more in
the textbooks, it will be trained for 360 times. This coarse approximation to
frequency in terms of training time guarantees that the orthographic and
phonological representations and their connections for each character in the
network will be different after some amount of initial training.

Testing

Once the network has self-organized on the phonological and orthographic
inputs and has learned the associative connections, we tested the model’s
performance by presenting the network with the testing characters.

Three groups of phonograms were sampled from the training set of Grades
2, 4 and 6 characters in the model. Each included 60 characters, in which 40
were from the trained characters, and 16 unfamiliar new characters that the
network was not trained on. Within the 40 trained characters, 20 were of high
frequency and 20 of low frequency. High frequency and low frequency
characters were defined as follows, with varying criteria for varying grades: for
Grade 2, 5 times or more of occurrence were considered high frequency, while
2 times or less were considered low frequency; for Grade 4, 8 times or more of
occurrence were considered high frequency, while 4 times or less were
considered low frequency; for Grade 6, 18 times or more of occurrence were

The Acquisition of Chinese Characters: 27

considered high frequency, while 9 times or less were considered low
frequency. The increasing numbers used in defining frequency ranges are
pased on the consideration that a given character will accumulate more
ies of usage at successive grades. For example, the frequency of a
character for Grade 2 is calculated from its occurrences in first and second
grede textbooks, whereas that for Grade 6 is calculated from occurrences in
fisst through sixth grade textbooks. New characters serve the same function as
pha-words in English; although the model was not trained on these characters,
the model probably learned aspects of the character’s phonological and
érthographic information, due to the resemblance of the trained characters to
the new characters, because the phonetics of the new characters also appeared
iiithe trained characters. For these 20 new characters, eight were regular and
10 were irregular or semi-regular in terms of character-to-radical pronunciation
regularity.
+WWe inputted the orthographic and phonological patterns of the testing
characters to the trained network to test the model’s naming ability, that is, the
éemput pronunciations of the characters. The outputs included the
pronunciations of the testing characters and the orthographies of the testing
characters. No learning takes place at this stage. Each grade model was run
aeparately for ten times, and the results were averaged across the ten runs.

«"Overall performance of the model. The model’s performance was evaluated
with the standard measures of representation accuracy as used by Miikkulainen
(W). These are accuracies computed for character orthography, character
Mhanology, and associative connections from orthography to phonology (see
eastier discussion in Method).

“%1m>wemH performance of the network after it was trained for 350 epochs
ﬂﬂchamcters corresponding to each of the three grades being considered.
mf»netwqu achieved an average of 76% accuracy for orthographic
WODS, 79% accuracy for phonological representations, and 93%
my for the associative connections from orthography to phonology, a
ju’b successful naming ability.

“iliffects of age and frequency in the model. To see the model’s ability in
' haming across grade, we first tested the accuracy of its naming of
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regular and irregular characters for Grades 2, 4, and 6. The mean performance
of the model from 10 simulation runs indicates that, like empirical results from
children, there were significant effects of age (grade) and frequency. The
naming accuracy for high-frequency characters (91) was significantly higher
than that for low frequency characters (.66) and new characters (24) (F2,54) =
1104.67, p < .01). The naming accuracy of higher grades (.64, .67) was higher
than that of lower grade (.49) (F(2,27) = 83.21, p < .01). Most important, the
interaction of grade by frequency was significant, F(4,54) = 25.42, p < 01.
Comparing the performances for high and low frequency characters, we found
that because of changes for low-frequency characters, the model for Grade 2
showed a larger frequency effect (.43) than for Grade 4 and Grade 6 (.16, .16,
respectively). This result indicates that as the network learns more characters,
its sensitivity to frequency decreases. In other words, frequency plays a
stronger role in earlier years of acquisition than in later years. However, for
new characters, the model in Grade 4 and Grade 6 showed higher accuracy
(.33, .26) than in Grade 2 (.13), F(2,27) = 27.88, p < .01). This result indicates
that the higher-grade models display a larger capacity to generalize to novel
characters than the lower-grade models because more characters have entered
the learner’s repertoire.

Regularity effects in the model. Our model displayed a significant regularity
effect. The ratio of naming accuracy for regular characters (.70) was higher
than that for irregular characters (.50) (F(1,27) = 250.71, p < .01). More
important, the model showed significant interactions of grade by regularity
(F(2,27) = 7.8, p < .01) and frequency by regularity (F(2,54) = 6.28, p < .01) ,
as seen in Fig. 7 and 8. In general, the effect of regularity tends to decrease
with grade: the model in Grade 6 showed a smaller regularity effect (.13) than
did the Grades 2 and 4 models (.23 in both cases). On the other hand, the low-
frequency and new characters (.23, .21) showed a larger regularity effect than
the high-frequency characters (.14). Previous computational models such as
Chen and Peng (1994) and Perfetti and Liu (in press) could not capture these
interaction effects. Our results match well with patterns found in empirical
research with children (e.g., Ho & Bryant, 1997; Shu, Anderson, & Wu, 2000),
where frequency interacts with regularity in the acquisition and the processing
of Chinese characters. Consistent with interpretations from empirical studies
(Seidenberg, 1985; Shu et al., 2000), these patterns indicate that when the
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Fig. 7. Interaction of regularity by grade in Simulation 1
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Fig. 8. Interaction of regularity by frequency in Simulation 1

learner (network or child) encounters characters that are unfamiliar or low in
frequency, it makes use of the pronunciation of the existing phonetic parts,
which benefits regular characters but not irregular characters.

We also analyzed the network’s strategies in the naming of new characters.
In naming phonograms that have not been encountered before, children as well
as our network could use a variety of methods to get at the pronunciation of the
character. The use of these methods would allow us to discern regularity effects
in reading acquisition. There are basically three methods the leamer could use:
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(1) reading the character as the pronunciation of its phonetic (e.g., “#&
Icheng2/” as “%‘/dengl/”); (2) reading the character as another character
having the same phonetic in the family (e.g., “Ui/bianl/’ as “{f/pianl/’); and
(3) reading the character as other unrelated characters (e.g., “t\/zongl/” as “J|
/kai3/”). However, each of these methods would lead to erroneous naming if
the new character is irregular.

Fig. 9 shows the ratio of the network’s (erroneous) methods in the naming of
new irregular characters for each grade, as a function of different naming
methods (M1 = Method (1); M2 = Method (2); and M3 = Method (3), as
indicated above).

Several interesting patterns emerge from Fig. 9. First, for Grade 2 characters
the network’s strategies (errors) were mainly based on Methods 2 and 3, that is,
reading the character as another character having the same phonetic in the
family (.46), or reading characters as unrelated characters (.47). This indicates
that although the network could capture character regularity partially, it was
equally prone to random reading. However, the model for Grade 4 and Grade 6
used mainly Method 2 (.68, and .71, respectively), indicating that the network
was more willing to pronounce the character as a character having similar
orthographic and phonological similarities. These results, especially the
dominance of Method 2 for Grades 4 and 6, indicate that our model, in the face

0.8

0.7

0.6
§ 0.5 -
E 04 BM2
0 0.3 M3

Grade Model

Fig. 9. Type of methods in the network’s naming of new characters
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of new characters, was able to exploit the sublexical orthographic information,
the correlations between orthographic and phonological representations (both
of which were learned from training), to generate pronunciations of new
characters. Note that the new characters are similar to English nonwords, and
to generalize on nonwords is a more difficult task than to produce the
pronunciations of words in the training set. Our model was not exposed to the
nonwords and therefore must piece together their pronunciations on the basis
of exposure to other items in the training set. Thus, the model provides a
computational realization of the notion of pronouncing nonwords “by analogy”
to known words (Glushko, 1979).

To summarize, we found that the model displays regularity effects starting
from Grade 2 learning. The regularity effect is modulated by a number of
factors, including age/grade and frequency. It is more transparent for low-
frequency characters than for high-frequency characters, and is more
pronounced for lower grades than for higher grades. The analysis of the
network’s naming strategies shows that the model shifts from a heavy reliance
on reading new characters as unrelated to a reliance on reading the character as
its phonetic. These modeling results are consistent with empirical data
available so far, in that both regularity and frequency are important factors in
elementary school children’s acquisition of Chinese characters. The results also
map well to the predictions based on corpus analyses of school textbooks with
respect to the importance of variables in character acquisition.

Simulation 2: Modeling Consistency Effects

Children and adults perform better with characters whose pronunciations are
consistent for all family members, as discussed earlier. We tested our model’s
accuracy in naming consistent and inconsistent characters for Grades 2, 4, and
6. Here consistent characters have family members that have the same phonetic
and are pronounced the same as the phonetic for characters introduced at that
grade (see earlier discussion).

The method of this simulation, including network architecture, training and
testing procedures, is identical to that of Simulation 1. The only difference is in
the materials.
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Materials

Each model (for each grade) contained roughly 260 characters. Consistent
with the corpus, more characters from larger families were sampled for the
higher-grade models than for the lower-grade models. We set a specific
percentage of characters for given ranges of character families in the COIpuUS; as
grades increase, the number of characters in the same range of families also
increases.

The testing materials included 90 characters, in a 3 (regular-consistent,
regular-inconsistent, irregular-inconsistent) x 3 (high frequency, low
frequency, new) X 3 (Grade 2, 4, 6) design. There were 30 high frequency, 30
low frequency, and 30 new characters for each grade model. New characters
were not trained in the model. Frequency was modeled as follows (with
varying criteria for varying grades, as in Simulation 1). For Grade 2, high
frequency characters were those that occurred for 5-10 times in the textbook
corpus, while low frequency characters1-2 times; for Grade 4, high frequency
characters occurred for 8-13 times, while low frequency characters 3-5 times;
for Grade 6, high frequency characters occurred for 16 times or more, while
low frequency characters 5-8 times.

For each frequency range, there were 10 regular-consistent characters
(whose character and phonetic are pronounced the same, including tone, for all
family members that take the phonetic); 10 regular-inconsistent characters
(Whole character and its phonetic are pronounced the same, but other members
that take the phonetic may be pronounced differently); and 10 irregular-
inconsistent characters (whole character and its phonetic are pronounced
differently, and other family members that take the phonetic are also
pronounced differently). This configuration of characters allows us to assess
consistency effect (regular-consistent vs. regular-inconsistent characters) along
with regularity effect (regular-inconsistent vs. irregular-inconsistent
characters). Note that whether a character was counted as consistent or not
depended on the specific grade: a character could be consistent for a lower
grade but become inconsistent in a higher grade as new characters that come
into the family (i.e., sharing the same phonetic) but pronounced differently
were introduced. We also assessed the degree of consistency for character
families by using a mean frequency weighted consistency measure (Fang,
Home & Tzeng, 1986; Shu, Chen, Anderson, et al. 2003), according to which
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Table 8. Degree of consistency in the testing materials for each grade

2nd 4th 6t
Regular-consistent 1.00 1.00 1.000
Regular-inconsistent 0.716 0.321 0.123
Irregular-inconsistent 0.394 0.328 0.050

the number of characters pronounced the same in a family is divided by the
total number of the characters in the family. Table 8 shows the degrees of
consistency for our testing materials for each grade model. It can be seen that
the degree of consistency for inconsistent characters decreases with grade,
confirming the general pattern in the textbook corpus.

Results

After training for 350 epochs on all characters, the network achieved an
average accuracy of 75.1% for orthographic representations, 78.3% for
phonological representations, and 95.4% for the associative connections from
orthography to phonology.

ANOVA on the naming accuracy for the three types of characters revealed a
number of interesting effects. First, the main effect of character type was
significant (F(2,54) = 294.44, p < .01). The proportion correct for regular-
consistent characters was higher than that for regular-inconsistent characters (p
< .01), which was in turn higher than that for irregular-inconsistent characters
(p < .01). Second, the main effect of frequency was significant (F(2,54) =
722.03, p <.01). The accuracy for high frequency characters was higher than
that for low frequency characters (p <.01), which was in turn higher than that
for new characters (p <.01). For high frequency, except irregular-inconsistent
characters, the model performed well starting from Grade 2, and for low
frequency characters the model increased its performance across grade. Third,
the main effect of grade was significant (F(2,27) = 80.20, p < .01), with the
accuracy for Grade 4 and Grade 6 being higher than that for Grade 2 but there
was no difference between Grade 4 and Grade 6.

There were also a number of significant interactions. First, the interaction of
character type by frequency was significant (F(4,108) = 35.35, p < .01). New
characters showed the largest consistency effect, as compared with high and
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low frequency characters (Fig. 10). Second, the interaction of frequency by
grade was also significant (F(4,54) = 15.09, p <.01). The model in Grade 2
showed a relatively larger frequency effect than in Grades 4 and 6. Third, there
was also a significant interaction of character type by grade (F(4,54) = 12.65, p
< .01). For Grade 2 the regular and irregular characters showed larger
differences because of the model’s poor performance on irregular-inconsistent
characters, whereas for Grade 6 relatively larger differences were observed
between consistent and inconsistent characters, especially for new characters
(Fig. 11).

Finally, a significant three-way interaction of character type x grade x
frequency (F(8,54) = 19.88, p < .01) reveals that, for high frequency characters,
there was no consistency effect (i.e., the model performed best for all except I-I
characters), for low frequency characters, there was a week consistency effect,
and for new characters, the consistency effect increased with grade
(performance increased for regular-consistent characters but remained steady
for regular-inconsistent characters; see Fig. 12). That naming accuracy
increases for consistent but not for inconsistent characters could be explained
as follows: the addition of new characters to consistent character families
increases the degree of consistency and thus boosts the overall naming
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Fig. 10. Interaction between character type and frequency in Simulation 2

Note. R-C = regular consistent; R-I = regular inconsistent; I-I = irregular inconsistent
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Note. R-C = regular consistent; R-I = regular inconsistent

accuracy, whereas the addition of new characters to inconsistent characters can
only deteriorate the overall degree of consistency for given character families.
This pattern is consistent with results from empirical studies (e.g., Shu, Zhou,



36 Hongbing Xing, Hua Shu, Ping Li

& Wu, 2000).

To summarize, the model in Simulation 2 displays both regularity effect and
consistency effect, and these effects interact with character frequency and
grade of learning. The consistency effect increases with grade, especially in the
naming of low frequency and new characters. These results are consistent with
the empirical results in showing that the consistency effect, compared with the
regularity effect, develops more slowly, perhaps not until when the learner is in
fourth grade (Tzeng, Zhang, Hung & Lee, 1995; Shu & Wu, in press). Thus, in
general, we see that consistency effects increase with grade while regularity
effects decrease with grade (Shu, Zhou & Wu, 2000; Yang & Peng, 1997). The
model also shows the interaction between character type and frequency, in that
the differences among three types of characters are larger for low-frequency
characters than for high-frequency characters. This interaction is also
consistent with empirical data from adults (Hue, 1992) and from children
(Yang & Peng, 1997), according to which the naming latencies of different
type of characters (regular-consistent, regular-inconsistent, irregular-
inconsistent and non-phonograms) differ more for low-frequency characters
than for high-frequency characters.

We should note that our modeling results tend to show earlier effects of both
regularity and consistency (grades 2 to 4) than what empirical data suggest for
children. This discrepancy may be related to the fact that there are many (about
55% in first grade) non-phonograms (e.g., pictographs and ideographs that bear
no phonological cues to pronunciations) in the textbook materials for children
to learn in lower grades. In our model, however, we used only phonogram
characters for simulation (see earlier discussion of rationale). Thus, in the
realistic learning situation, children will have a more difficult time than our
model to learn the relationships between orthography and phonology, and
hence acquire regularity and consistency a bit later than does the model.

General Discussion

A major debate on word reading and orthographic processing in the past
decades centers on whether skilled readers use dual routes to pronounce
written words, a phonological or sublexical route for regular words and a
lexical route for exception words. While research by Coltheart and colleagues
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support the dual-route theory of reading, connectionist models of reading by
Seidenberg and colleagues argue that a single mechanism can account for the
reading of regular words, exception words, and pronounceable nonwords, in
both normal and impaired reading situations. Connectionist models have
successfully captured the effects of word frequency, regularity and consistency
in spelling-sound correspondence, and the interaction among these variables in
the on-line processing of written word recognition (see earlier discussion).

Chinese is a non-alphabetic language, and the characters that form the basic
units of word reading are logograms. Because the orthographic shapes of
characters map mostly to meaning rather than to sound, many believe that the
learning of Chinese characters involves mainly rote learning (i.e., character by
character). Empirical research in the last twenty years indicates, however, that
readers use the regularity and consistency information in the mapping between
orthography and phonology, and that these variables interact with character
frequency and experience of learning. Moreover, these variables also play
important roles in word reading and recognition in adults, and they affect the
process of character acquisition in children. Thus, although the orthographic
structure of Chinese is fundamentally different from that of English or other
Western languages, word reading in Chinese is also a systematic and dynamic
process.

In this study, we set out to capture a natural character corpus as learned by
children in elementary school, with particular reference to the roles that
character regularity, consistency, frequency, and their interactions play in
children’s acquisition process. From our corpus analysis, we show that there
are many inherent statistical properties of the characters that children learn as
they progress through the elementary school years. These statistical properties
promote children’s awareness to regularity, consistency, and frequency effects.
In the connectionist models, we further examined how the learner, a self-
organizing neural network, extracts these properties in the process of character
naming,

On the basis of character’s visual properties from a large-scale character
database, we have developed representation schemes to faithfully capture the
orthographic similarities of Chinese characters and to serve as input to our
model. Our model successfully captures various effects of character properties,
and the complex interactions between them and their interactions with age of
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learning. In particular, consistent with empirical evidence, our simulations
indicate that regularity effects are more transparent for low-frequency
characters than for high-frequency characters, and is more pronounced for
lower grades than for higher grades. The analysis of the network’s naming
errors shows that the model shifts from using no regularity information in
naming novel characters to using such information at a later stage. Our results
also show clear consistency effects, which interact with character frequency
and grade of leaming, and in contrast to regularity effects, consistency effects
increase with the leaming grade, especially in the naming of low frequency and
new characters. These simulated patterns of regularity, consistency, frequency
and their interactions with age/grade match with the predictions based on our
corpus analyses of school textbooks, and with available empirical evidence on
children’s acquisition of characters during the elementary school years.

With respect to regularity effects, our model indicates a general regularity
effect from Grade 2 on, but detailed analyses of low-frequency characters and
the naming strategies show, consistent with Shu et al.’s (2000) argument, that
systematic knowledge of character regularities (and the application of it to new
characters) takes time to develop. Shu et al. (2000) argued that although school
children can in principle utilize phonetic information early on, they display
regularity effect only after they have learned a relatively large number of items
in the phonogram families (around grade 3 or 4). At this point, it is not yet clear
what number would constitute a large enough number, for example, whether
children at Grade 2 have learned enough characters for them to develop
awareness to character regularity, or whether this ability has to wait until later
grades. Future simulations with better control of the guantity of characters in
leaming are needed to address this issue. With respect to consistency effects,
our model indicates that character consistency depends highly on character
frequency: consistency effects are much less clear for high frequency
characters than for low-frequency and new characters. Empirical data from
children and adults both suggest that naming latencies of different type of
characters (regular-consistent, regular-inconsistent, irregular-inconsistent) do
not differ for high frequency characters, but differ for low frequency
characters.

Note that our results present only a general (averaged) picture of children’s
development of sensitivity to regularity and consistency of characters.
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Empirical research shows that children may be divided into “good” or “poor”
readers, depending on a number of variables in the developmental process.
Such individual variations obviously would affect how early a given child will
show effects of regularity and consistency. There is an emerging literature that
indicates, for example, that children’s knowledge or awareness of the
phonological structure of characters contributes significantly to their reading
abilities (Leong, in press; McBride-Chang & Zhong, in press; Shu & Wu, in
press; Siok & Fletcher, 2001), which, among other variables (e.g., visual
skills), would account for individual variations in character acquisition. Future
research should consider parameters that lead to such individual variations in
the model.

Our corpus analyses and connectionist modeling studies represent an initial
attempt in the systematic investigation of children’s acquisition of Chinese
characters. The computational properties as implemented in self-organizing
neural networks (e.g., DISLEX) have allowed us to model the classical effects
of word reading and naming in an orthographically different language. Our
analyses and models often suggest more detailed patterns of interaction than
what is currently available in the empirical data. For example, empirical
research has yet to provide us with a detailed picture of the various interactions
among character types, frequency, and age in acquisition by elementary school
children. Thus, our study could serve to inspire more empirical studies, against
which detailed modeling results can be compared.
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strokes of characters in the UCS database. Given that about 2/3 of the Chinese
characters are within 10 strokes, characters with 10 or more strokes are
represented as 1.0, and the rest as values (in decrements of .1) that correspond
to the number of strokes (i.e., 0.9 for characters with 9 strokes, 0.8 for
characters with 8 strokes, and so on).

Stroke relations in radicals. There are six basic relations among strokes in
radicals: single strokes, crossing (two strokes are crossed in a point), separate
(two strokes are not connected), connecting (two strokes are connected in a
point), crossed-connecting (one end of the stroke is crossed and another end is
connected; for example, the second stroke of 1), and crossed-separate (one
end of the stroke is crossed and another end is separate, for example, the third
stroke of % ). Six values are used to represent the stroke relation in radicals.

Position of radicals. Radicals usually have a fixed or a frequent position
within a character. For example,  { “usually occurs on the left position of a
character, and “ I|on the right of a character. We represented the position of a
radical in a character by the following values: the radical on the left position of
a character(e.g. “ 1 7, “ A5-25), on the right position (e.g. “ 1], “37. JJ2&"), at
the top position (e.g. “#%”, “4%5-3L.7), at the bottom position of (e.g. “H-, “F¢
FJE”), at the middle position (e.g, “/n”, “ZEFHE”), on the outskirts (e.g.
“I'T”, “[51F4%”), inside of a character(e.g. “ &7, “BE=.(»\"), at a comer of a
character (e.g. “4”, “BF "), a single stroke (e.g. “—”), and the radical as
an independent character (e.g. “H”). Ten values are used to represent the
position of radicals,

Shape of strokes. There are four units for representing the shape of the first,
second, third and last strokes in a radical. Five values are used for the shape of
each stroke, according to commonly used categories in the teaching of Chinese
characters. These are: horizontal, vertical, slanted, pointed, crooked.

Representation of whole characters Four important properties are included
in the representation of whole characters: structure of character, ordering of
radicals, split structure of radicals, number of radicals. We use the slot-based
Tepresentation for combining basic radicals into characters. A total of 322 units
(see Appendix Table III) is used for the orthographic representation of
characters, including the units representing basic radicals.

Structure of character. The overall orthographic structures for Chinese
characters can be divided into 13 categories at least, according to our analysis
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Appendix Table I11. The 322 units in the orthographic representation of Chinese
characters
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of the UCS Chinese Character Database. However, the major six categories
according to our analyses are: unique characters without apparent structure,
left-right or left-middle-right (character made of left radical plus right radical,
sometimes with a third radical in the middle), top-bottom (character made of
upper radical and lower radical), top-middle-bottom (character made of three
radicals of the order), surrounding (character made of a surrounding frame),
and frame (Shu, Chen, et al., 2003; Standards Press, 1994). Six units, with 34
values, are used to represent the structure of character. For example, there are 7
values for top-bottom characters. The character “f&” and “%7” are both top-
bottom characters. However, given that the bottom of “/&” is a left-right
structure while the top of “#1” is a left-right structure, they have different
values. The former is 0.429, and the later is 0.875.

Ordering of radicals. Once the structure, position, and shape of radicals are
numerically coded, each radical of a character needs to be arranged in the serial
order in the vector representation. The same ordering problem for letters of
words occurs in English (the so-called “dispersion problem”; Plaut et al.,
1996). If all radicals are simply assembled in the order in which they appear in
the character, we could end up with very different representations for
characters sharing the same radicals in similar position, in much the same way
as we would with spot and por if we simply code the order of letters as they
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come into the representation (see Plaut et al., 1996). To preserve the structural
similarities of radicals in characters, we used a slot-based or template-based
representation for radicals. It works in much the same way as we would assign
an initial consonant slot for /s/ in spot, but leave that slot empty for pot, such
that we can align the corresponding letters or phonemes in the two words in
their corresponding slots (see Li & MacWhinney, 2002, for a detailed
treatment). For each character, then, we arrange the radicals to appear in a total
of seven slots (given that in our corpus the maximum number of radicals is
seven). In such a representation, for example, for the character “%i[", radical 1
is “11”, radical 2 is “}3”, and radical 7 is II”” For the character “FI”” radical 1
is “K” and radical 7 is “ I The two characters thus have more similarities in
the representation than if they were arranged serially from one to the next.
Characters that have fewer radicals are arranged so that the first radical fills the
first slot, the second radical the fourth slot, and the third radical the seventh
slot, thus covering the overall slot template evenly. Table IV gives examples
along with their slot assignments in the template.

Split structure of radicals. One unit, with 6 values, is used to represent the
split structure of radical: single, left-right (left-middle-right), top-bottom, top-
middle-bottom, surrounding, frame. For example, the character “/%” is first
split into two radicals: the top radical “+ is a single-structure radical. This is
the first level of split structure, valued 1.000. The bottom radical “f£” is a left-
right structure radical, valued .833. According to ordering of radicals, it is in
split structure 5. The radical “ ** can be further divided into “37” and “[1”. It

Appendix Table IV. Examples for slot assignment in the template

Example Structure Radical 1 Radical2 Radical3 Radical 4 Radical 5 Radical 6 Radical 7

A Single A

Bl Leftrigh — 8| M I

B Leftmid-  F p'e X
right

&  Updown A — ] m

%  Upmidde H - X
down

%  Updown { a7 ]
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is a top-bottom structure radical, valued .667. It is thus in spljF sﬁucnge 6 If er
combine the radical and character levels, the representation of. - 1s_in
Radical 1, the representation of “ { ” is in Radical 5, the represen.tatlon of .“ _\L
is in Radical 6, and the representation of “I1” is in Radical 7, with 44 units in
all of the radical representations. .
Number of radicals. A given character can consist of up to 13 different
radicals, according to our analysis of the database. However, most of the
characters in the school corpus have three radicals, and the most comple).( ones
have seven radicals. Seven values are used to represent the number of radicals.

Representation of phonology of radicals . o

One aspect of our orthographic representation scheme as depicted in Figure
6 is that it includes phonological information of the character and its phonetic
component. The purpose of these phonological units is to see how much
overlap there is between the pronunciation of the phonetic and that of the
whole character. It would seem strange to mix phonological information with
orthographic information in one representation, but this arrangement was taken
because of the consideration of the unique features of Chinese characters and
the empirical evidence for the role of phonology in the processing of Cl'linese
orthography. Many studies report that phonograms are automatically
decomposed into phonetic and semantic radicals during lexical access, apd the
sound information of the phonetic component as well as the character is also
strongly activated (Taft, in press; Yang, Peng, Perfetti & Tan, 2000; Zhou &
Marslen-Wilson, 1999; Wu, Zhou & Shu, 1999). These studies suggest that the
orthography of a phonogram is not simply a graphic symbol of the whole
character, but contains sublexical information, such as sound information of a
phonetic. In our model, thus, sound information of whole characters and their
phonetics is included into the orthographic representation of phonograms.
Earlier models (e.g., Chen & Peng, 1994; Perfetti & Liu, in press) did not
include this aspect in their representations and therefore failed to capture
critical aspects of character processing.





