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Abstract

In this paper we present a self-organizing connec-
tionist model of the acquisition of word meaning.
Our model consists of two neural networks and
builds on the basic concepts of Hebbian learning
and self-organization. One network learns to ap-
proximate word transition probabilities, which are
used for lexical representation, and the other net-
work, a self-organizing map, is trained on these rep-
resentations, projecting them onto a 2D space. The
model relies on lexical co-occurrence information to
represent word meanings in the lexicon. The results
show that our model is able to acquire semantic rep-
resentations from both artificial data and real cor-
pus of language use. In addition, the model demon-
strates the ability to develop rather accurate word
representations even with a sparse training set.

Introduction

A central debate in the domain of language ac-
quisition is how children acquire the meanings of
words. Although numerous studies have addressed
this question in the last few decades, researchers
have not yet reached any consensus. One important
line of disagreement is whether children can use con-
textual or structural knowledge from the sentence
to bootstrap their learning of the semantic contents
of words. Proponents of the syntactic bootstrapping
hypothesis (e.g., Gleitman, 1990) argue that children
can and do make use of the structural information
to learn word meaning, whereas advocates of the se-
mantic bootstrapping hypothesis (e.g., Pinker, 1994)
are suspicious of such an approach that relies on the
child’s distributional analysis of the input.

In recent years, connectionism and computational
analyses of large-scale corpora have revitalized the
interest in structural relationships and distributional
analyses of language. Independent of proposals like
the syntactic bootstrapping hypothesis in child lan-
guage, research has revealed the power of distri-
butional information in deriving accurate represen-
tations of the meaning and function of linguistic
components. In particular, it is argued that both
grammatical and semantic categories can be ac-
quired by connectionist networks or similar statis-
tical machines through the computation of the sta-
tistical regularities inherent in the input data. For

example, Elman (1990) showed that categories of
nouns and verbs, and subcategories of animates ver-
sus inanimates (within nouns), and transitives ver-
sus intransitives (within verbs), can emerge from a
simple recurrent network’s analyses of the lexical
co-occurrence properties in the input. Redington,
Chater, and Finch (1998) demonstrated that the use
of distributional properties in a large-scale speech
corpus allows a statistical system to derive gram-
matical categories. Landauer and Dumais (1997)
showed that it is also possible to accurately represent
semantic relationships through a high-dimensional
word-to-text matrix.

Burgess and Lund (1997, 1999) proposed a high-
dimensional space model to represent the meaning of
the lexicon. Their model, the Hyperspace Analogue
to Language (HAL), attempts to capture meaning
by reference to global lexical co-occurrences — how
many words co-occur with the target word, and how
often, in a large moving window that runs through
the text. A co-occurrence matrix for any number of
words in a given window is derived, and weighted
by the frequency of co-occurrence among the words.
The columns and rows in this matrix represent the
co-occurrence values for words that follow and pre-
cede the target, respectively. The target word is then
represented by concatenating the column and row
values. Burgess and Lund claim that this method
captures the global lexical constraints for words,
and the constraints reflect the total contextual his-
tory of a word in a high-dimensional space of lan-
guage use. In an attempt to apply this method to
the acquisition of word meaning, Li, Burgess, and
Lund (2000) analyzed the 3.8 million word tokens of
parental speech in the CHILDES English database
(MacWhinney, 2000) and found that it is possible to
derive accurate semantic representations given a rea-
sonable size of corpus such as the CHILDES adult
speech (rather than a very large corpus such as the
Usenet data for the original HAL model). The im-
plication is that young children can acquire word
meanings if they exploit the considerable amount of
contextual information in the linguistic input. How-
ever, this study, like HAL, does not qualify as a true
developmental model, because no learning was in-
volved in arriving at the representations — only sta-



tistical analyses of the data were involved (e.g., win-
dow size, corpus size, and the constraint dimensions
were manipulated at each stage). In short, HAL is a
representation model and not a processing or learn-
ing model, as Burgess and Lund (1999) pointed out.

In this study, we present a self-organizing neural
network model that can learn semantics from lin-
guistic input. The basic idea is similar to HAL,
but there are two major distinctive features to our
model: (1) it is based on unsupervised neural net-
works that learn on line, (2) it incorporates a mech-
anism that leads to accurate word representations
(and consequently meaningful lexical maps) even
when the training data are sparse. Our model builds
on the basic concepts of self-organization and Heb-
bian learning (Kohonen, 1990; Miikkulainen, 1993),
and incorporates ideas from semantic categorization
in feature maps (Ritter & Kohonen, 1989; Li, 1999,
2000). ' Preliminary results show that our model
is able to acquire rather accurate semantic represen-
tations from both artificial data and real corpus of
language use.

Method

Our model consists of two neural networks that func-
tionally interact with each other. Fig. 1 presents
a diagrammatic sketch of the model. The lower
part is a special recurrent neural network, the word
co-occurrence detector (WCD), whose modifiable
connections are trained to approximate word tran-
sitional probabilities. The upper part is a self-
organizing map (SOM; Kohonen, 1990), which reads
the words distributively represented in the modifi-
able connections and creates a two-dimensional lay-
out of the lexicon.

An initial assumption of the model is that we
have a pool of N localist word representations cor-
responding to the lexicon. Whenever the word
w; is read, the corresponding unit in layer A be-
comes activated, creating localist representation o =
[01,...,0N]. At the same time step, layer B holds the
previous word w; (context) represented by vector
¢ = [e1,...,en], which was copied over there from
layer A in previous time step.

The algorithm

The adaptable connections between layers A and
B serve to approximate the transitional probabili-
ties between successive words, and as such, they are
trained by Hebbian learning with implicit normal-
ization to become probabilities. Therefore, two co-
occurrence matrices instead of one are used in this
model. Assume that at time ¢, the current word
is w;, and is preceded by word w;. At every time
step, both 1 and r links are modified. Specifically,

Towe (1997) presented a similar model to simulate
semantic priming. Developed independently of his re-
search, our model differs from his in implementation de-
tails, and focuses on different theoretical issues.
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Figure 1: The architecture of the model. Layers A and
B of the WCD (see the text) have full connectivity via
modifiable 1 and r links of the WCD. Other, one-to-one
links serve to feed the unit activity from A to B with
(discrete single time-step) delay. The SOM is a self-
organizing neural network trained on distributed word
representations extracted from modifiable links.

the link /;; is updated to approximate P(w§_1|w§),

i.e. the probability that the word w; preceded the
word w;. At the same time, the link r;; is updated
to approximate P (w! |w§-_1), i.e. the probability that
the word w; follows the word w;. Each word is then
characterized by a concatenation of vectors

L =[la,le, ., lin]
r; = [T1i7r2i7"'7rNi]

where 1; approximates the probability distribution of
words preceding w; (left context), and r; the proba-
bility distribution of words following w; (right con-
text). Each word is thus represented by a real-valued
vector q; = [l;, r;] of dimensionality 2N.

The learning rules used for updating the connec-
tions have the form

All; = Bol(ci — 1)

Ar;fi = Bct (ot —rt))
where 0 < 8 < 1 is the learning rate. 2 Simul-
taneously with q; update, the SOM is also trained
on q; as inputs. Every SOM unit k& has an array
of connections in the form of a codevector m; =
[Mk1, ..., mg,2n] associated with it, which learns to
approximate the inputs in such a manner that ev-
ery SOM unit tends to become “specialized” for a
concrete word q;, and that neighboring units will
become specialists (“winners”) to similar words.

?Basically, these learning rules work as counters, as in
the HAL model, except that normalization is performed
simultaneously with counting.



The SOM algorithm is standard (Kohonen, 1990).
At every time step, the winner £* is found to sat-
isfy the condition k* = argming{||q;(t) — my(¢)||},
where ||.|| denotes the Euclidean distance, and then
all codevectors within winner’s neighborhood are
shifted towards the current input via

Amy(t) = at) [qi(t) — mg(?)] ,

for all £ in the neighborhood of £*. During learning,
both neighborhood radius and learning rate 0 < a <
1 decrease in time.

It is reasonable to start training the SOM codevec-
tors at a relatively later stage of the WCD network.
The reason is that the SOM sees statistically ac-
curate word representations only towards the end of
training, so delayed update of codevectors facilitates
their ordering and convergence.

Generalization

To extend the basic algorithm, we would like the
model to have some generalization property for novel
word transitions. So far the links would be updated
only between adjacent words seen in the training
data. For example, if the model has been trained
on word strings like John sees and Mary loves we
would like the model to have non-zero prediction
probabilities (stored in SOM connections) when pro-
cessing the word strings John loves or Mary sees,
which have never occurred in the training data. It
is well known that human learners are able to make
this type of generalization (Fodor & Pylyshyn, 1988;
Elman, 1998).

Our hypothesis is that words that occur in the
same contexts will tend to have similar vectors, as
our model represents words by distributed vectors
g; that incorporate context information. We can
exploit these vector similarities to obtain general-
ization properties for novel word transitions.

We applied the following mechanism in the later
phases of training when the SOM units are expected
to have already established some global order. At
each time step, the winner for the current word is
found in the SOM. A few units j among its neighbors
are also identified, which have the status of being the
winner for any word. This requires a unit labeling
procedure running on line (based on majority voting,
so that every unit could have only one word label as-
sociated with it). Next, for each SOM unit %, the
corresponding output units o0; in the WCD network
are set to one, thus enabling the update of their con-
nections. This strategy enables an extended update
of connections from previous-word neighborhood to
current-word neighborhood, instead of simply from
previous word to current word. As a consequence,
more accurate g;’s can be obtained even when the
WCD network sees only a fraction of word transi-
tions in the training data. 3

3This method may be thought of as a kind of smooth-

Normalized negative log-likelihood To evalu-
ate the model’s generalization ability, we measure
how the model can generalize to previously unseen
word strings. We use the normalized negative log-
likelihood (NNL), a commonly used method for per-
formance measure in symbol prediction tasks (Ron,
Singer, & Tishby, 1996). This is done as follows.
The parameters of the model are fixed after train-
ing and for every word in the vocabulary there is a
corresponding winner among the SOM units. In a
sequence of words W = wjws...w,, every time the
model sees the word w(t), we find its winner k* in
the SOM, and the estimate of its next correct-word
probability P(wt!|w!) = my- ;4 v is read out (from
the right-context part of connections’ array), where
j is an index of w't!. Hence, for every model M
and the test sequence W;.,; we evaluate

s—1

-1 .
NNLp(Weest) = Py ZIOgN P '),
t=1

where the base of the logarithm equals the number
of words in the lexicon. The higher the next correct-
symbol probabilities are, the lower the NNL is, and
vice versa. If NNL = 0, prediction accuracy is 100%;
if NNL = 1, the distribution of probabilities is uni-
form.

Results

Artificial corpus

We tested our model on data created by a simple
language generator (SLG, Rohde 1999). Compared
to the well-known Elman 29-word data set (Elman,
1990), our data set was slightly more complex (with
45 words). We added plurals, optional adjectives
and determiners to SV(O) sentences, which allowed
us to generate more complex sentences such as the
hungry lion chases boys, girls sit-in a bus,
and a dog barks.

Out of the hundreds of sentences generated by
SLG we used 435 unique sentences so that none of
the sentences was repeated. All sentences had the
end-of-sentence mark (EOS) as an additional sym-
bol. Sentences were presented to the model in ran-
dom order, one word at a time for each sentence.
Learning started in the WCD network (8 = 0.005),
and during the second half of the training, learn-
ing also took place in the SOM network. Figure 2
shows the SOM for all 45 words. Clearly, word rep-
resentations based on q’s from our model provide
a considerable amount of information, sufficient for
the data to be correctly mapped onto a 2D topol-
ogy preserving space according to syntactic as well
as semantic categories.

ing the bigram probability estimates based on words with
similar statistics, as used in statistical NLP (e.g., Man-
ning & Schiitze, 1999).



- car . cats - . - cat - dog - john -
bus - . . . dogs -
- bread - . . - bites - - mary -
fruit - meat - walks - - lion -« - boy
- eats - - girl .
- mangy - walk - - dragon -
- bite - - sit_in -
quick - nasty - eat - - see . EOS -
- hungry - . - bark - . . . . - drive
- crazy - . . . feed - - chase -
sleazy - - happy - barks - . . . . - sits_in
a + + o« « « . sees .

the . girls - boys - feeds - - chases - drives

Figure 2: The SOM trained on artificial data. The
network identified various grammatical as well as some
semantic categories.

0.75
0.7
0.65
o
2 06
0.55

0.5

0.45

Number of nearest neiahbors

Figure 3: Prediction accuracy of the model during test
on artificial data. Inclusion of neighbors in connections’
update helps to derive more accurate word representa-
tions even with a small amount of training data.

Next, we investigated the generalization property
of the model. We wanted to model the fact that hu-
man learners (children in particular) process a frac-
tion of all possible (meaningful) word combinations
and are able to produce and understand novel word
combinations. To simulate this ability, the model
should have non-zero next-word prediction proba-
bilities so that new word associations can occur.

The model was trained on a very small portion of
the data (81 sentences) and tested on the remaining
data (354 sentences). The effect of neighborhood
update becomes even more visible in this case. Ran-
dom splitting was performed 10 times and the re-
sults were averaged. As shown in Fig. 3, NNL was
smaller, if we included at least one nearest neighbor
in adaptation. However, higher numbers of nearest
neighbors did not improve accuracy, since they al-
ready tended to induce non-existing word transitions
in word representations. Improvement in accuracy
could also be observed in the corresponding maps.

Realistic corpus

To test whether our model can scale up to real-
istic data, we examined our model’s performance
on the parental/caregivers’ speech in the CHILDES
database (see Li, Burgess, & Lund, 2000 for a de-

scription of how the data were extracted). We
took parental speech from the Wells corpus (Wells,
1981) and used the 300 most frequent words (roughly
150,000 word tokens) from the data. All other words
were treated as a single unknown word w,, in the lex-
icon (hence N = 301). However, because of the rel-
atively high frequency of the unknown words (33%)
in the data, treating them all as one would induce a
bias toward w,. To correct this word imbalance, we
imposed a probability restriction on w,: whenever
the word w, was read, the update of connections
occurred only in 1% of cases; in other cases reading
was skipped to the next word (this might simulate
the process of treating unknown words as noise).

Training on this large-scale data set was rather
time-consuming. To speed up learning, we first
trained the WCD network to develop word repre-
sentations (8 = 0.01) and then trained the SOM
off-line on converged word representations.

Fig. 4 presents the SOM that was trained on the
CHILDES Wells corpus for two epochs. Upon closer
examination, one can observe various grammatical
categories that were clustered in the map: proper
nouns, verbs, auxiliary verbs, adjectives, pronouns,
etc. Semantic similarities also emerged within the
categories.

Discussion

An important premise behind the syntactic boot-
strapping hypothesis is that children can acquire
word meanings through their distributional analy-
ses of the linguistic input. The distribution-analysis
approach has a long tradition in linguistics and psy-
cholinguistics. In fact, much of the pre-Chomsky
linguistics is the so-called structuralism that exam-
ines the structural relationships between linguistic
units (Bloomfield, 1935). Saussure (1916) proposed
that the function of a given linguistic “entity” (e.g.,
a word) is defined entirely by reference to the re-
lationships that hold between this entity and other
entities, much like that the role of a chess piece is de-
termined by its relationship with other pieces on the
chessboard. For example, words of the same class
tend to occupy the same slot in a sentence (paradig-
matically similar) and have the same co-occurrence
constraints with other words (syntagmatically sim-
ilar). * Chomsky (1957), however, treating struc-
turalism as purely associationist, threw out this ap-
proach in linguistics and replaced it with an empha-
sis on higher-order hierarchical relationships for lin-
guistic structures. Thus, few linguists today believe
that associationism or structuralism could work for
language.

“In this context, we can claim that our model places
paradigmatically similar words close to each other in the
map, whereas syntagmatically similar words can be far
from each other. However, the mutual associations be-
tween the latter are captured in the SOM codevectors in
the form of prediction probabilities.
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other - matter * time - - boy - -another - - this - - your - the a - . . « look - - good - - minute
- baby - - which - - that - - little -
same - - man - girl her - his
car he . . it - some - big bit
way - - box - him my - dirty -naughty-
- top - dog - one she - them - - any - funny . long - lovely - nice . drink - lot
water - - thing - -morning- - mine - -enough -
-washing- book - - house - bread - -daddy’s- . overy - - they're -
- things - - coming - an  mummy's - cup -
- chair - tea - - yours - - why - - silly - we're -
bottom - - money - - gone - wet - day -
- potty - - dinner - more - XXX - these . those - i'm - you're - i've
- hand - -« two - « three - « much - - alright - - right -
- mouth - - bye - - youd - four - . cold - - you've
hands - head - own - « sleep - hot <owell -0l it's - she's -
- bed - - school - . pﬁ\gﬂgn . something too not - better -
- shoeshair - - yeh . quick - - five - - lets . you'll - - he's -
- work - night - ow . yeah . . ones - - only - we - dear
- hang - - stay - - before - - hey - old still or to - they - i
be as um -mmmm - - please - you yes
- come - - after - eh . betty - first -yourself + who - oh
- make - « love - - nicola benjamin jason - - jackpstairs- - where - what - - how - no
- darling - iris - gavin - - mum - - well -
go get - - else - - gary - - our - - home - . hasn't - -because- when - - that's
- play - - bang - playing - - has -doesn't- - help -
sit - about - - daddy -mummy- - listen - so but - tell
put see - who's - yet - today - - need -comes - - give -
eat « shut - - what's - me - ready - - goesmgain - « hurt - show -
take - - find - - having - - getting - - never - - went - let
« hold - - watch -where's- - there's - . really - < mind - for
touch - - keep . pick - « just . been -finished- - might -« - won't + now -
- break - - with - - wait - - could - - then - - there
- pull - open . bring - from - - done - - must - - should - - have -
leave - by of « had - - were - - shall - « here
« tun . all in - mean - said - - would - aren't -
stop - - wasn't - - round - got like - - say - -thought. told - if
- away - - over - at - don't -
isn't - - does - off - wants - - doing - - can't - « think - - didn't - will - thank
- down -
is was - alonéack - up out on .- and - . going - - want - - can - - know - -haven't- are did do

Figure 4: The SOM (40x40 units) of 300 most frequent words in a portion of the CHILDES parental data. Various

grammatical categories are distributed across the map, sh

owing considerable structure. For example, one cluster of

nouns can be located in the top left part of the map, whereas a group of proper nouns can be found in the center.
Adjectives are located in top right corner. Pronouns are mainly placed in top middle part. Verbs are spread mainly
over the bottom half of the map space and within this category, one can identify auxiliary verbs in the bottom

right part, etc. Also, semantically similar words are often

positioned to neighboring units in the map. For example,

mummy’ s ,daddy’s in top middle part, now,then and there,here bottom right, up,down bottom left, and so on.

Connectionist approaches represent a new way of
looking at associations and structural relationships
in language. Our model, along with many other
similar statistical models of NLP, appears to fare
well in capturing the higher-order relationships in
language without recourse to strictly symbolic rules
and hierarchies. The model we presented here shows
that lexical semantics, traditionally considered a dif-
ficult part of language, can indeed emerge from the
learning in connectionist systems, in particular, self-
organizing neural networks (see also Li, 1999, 2000,
in press). Some researchers may also view our model
as a connectionist implementation of statistical NLP,
because we examine many of the same issues there.

We have demonstrated in this paper that it is pos-
sible to learn meanings of words through the learning

of co-occurrence statistics, in line with the syntactic
bootstrapping hypothesis and the HAL model. Our
model learns very simple co-occurrence constraints,
and acquires syntactic and semantic categories, in
both artificial and realistic linguistic corpora. Our
model is also able to display generalization charac-
teristics, that is, to learn novel combinations of word
strings that are absent in the training data. The sim-
ulation results also indicate that the model does not
require a very large amount of data to arrive at ac-
curate semantic representations, contrary to what is
commonly expected of statistical learning models.
Self-organizing maps provide an important tool
for us to capture lexical relationships, as demon-
strated in this study. There is a lot of information in
the SOM connections (both lateral and input) which



quantitatively describe how the words are associated
with each other. Although our model does not di-
rectly incorporate lateral connections, these connec-
tions can replace the grid topology in the SOM and
can be used to represent more complex semantic re-
lationships. One future research direction is to im-
plement lateral connections in our model.

Several other directions/limitations will also be
considered in extending the current model. First,
the dimension of the word representations grows
with the number of words, which makes it difficult
to scale up to a very large lexicon. It is a challenge
to overcome the initial localist representation while
preserving lexical identities. Second, in the current
model, the information for SOM is extracted from
WCD connections, thus making the model some-
what unusual in terms of information access and
flow. Therefore, it would be useful to transform this
information to unit activations which then feed to
the SOM. Third, the current model is not designed
to learn lexicon incrementally; that is, it is unable to
take new words to the existing lexicon during learn-
ing. Finally, the model uses only the shortest win-
dow of context (immediately before and after the
target word) to derive semantic representations. Ex-
periments in the HAL model show that larger win-
dow sizes yield more accurate word representations
(Li, Burgess, & Lund, 2000). In English, this pa-
rameter may appear less significant due to the strict
word order; in other languages with relatively flexi-
ble word order (e.g., Chinese, Italian), the size of the
context window may prove to be very important.
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