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Abstract

We present a self-organizing neural network model that can
acquire an incremental lexicon. The model allows the ac-
quisition of new words without disrupting learned structure.
The model consists of three major components. First, the
word co-occurrence detector computes word transition prob-
abilities and represents word meanings in terms of context
vectors. Second, word representations are projected to a
lower, constant dimension. Third, the growing lexical map
(GLM) self-organizes on the dimension-reduced word repre-
sentations. The model is initialized with a subset of units in
GLM and a subset of the lexicon, which enables it to capture
the regularities of the input space and decrease chances of
catastrophic interference. During growth, new nodes are in-
serted in order to reduce the map quantization error, and the
insertion occurs only to yet unoccupied grid positions, thus
preserving the 2D map topology. We have tested GLM on
a portion of parental speech extracted from the CHILDES
database, with an initial 200 words scattered among 800
nodes. The model demonstrates the ability to highly pre-
serve learned lexical structure when 100 new words are grad-
ually added. Implications of the model are discussed with
respect to language acquisition by children.

Introduction

Contexts in which a word occurs provide a consider-
able amount of information for the representation of
word meaning. This position has been the core for var-
ious computational models of language (such as HAL
[1] or LSA [2]), in which every word is represented by
its context vector in a high-dimensional space. In the
connectionist literature, context-based word represen-
tations can be derived analogically by clustering anal-
yses of hidden unit activations of a recurrent network
that has been trained on a next-word prediction task
[3]. It has also been shown how various syntactic and
semantic categories can emerge in the self-organizing
map (SOM) when it is trained on context vectors [4].
Li, Burgess and Lund [5] have studied the effect of var-
ious model parameters (window size, corpus size and
word dimensionality) on the quality of lexical maps
when generated by SOM, trained on HAL vectors.

All the above mentioned approaches assume a lexi-
con of constant size. However, human speakers acquire
a lexicon that develops incrementally over time. In this

lalso with IMS SAS, Bratislava, Slovakia

paper, we extend our previous work [6] to model the
developmental process of lexical acquisition. We pro-
pose a model of a growing lexical map (GLM) whose
size grows over time.

A number of growing self-organizing neural network
models have been previously proposed to cope with the
case of variable input space. However, most of these
models have arbitrary dimensionality and connectiv-
ity (see, e.g., [7] and references therein) which makes
them difficult to visualize in two dimensions. The IGG
model [8] overcomes this difficulty in that it preserves a
strictly 2D topology. Similarly to IGG, the insertion of
new nodes in our GLM model is restricted to the grid
positions. Unlike IGG, however, new nodes in GLM
are inserted in between existing nodes instead of the
perimeter of the grid.

In a psychologically plausible model of lexical devel-
opment, it is necessary that (1) learning new words does
not override the existing knowledge, and (2) the model
remains well settled at all stages of development, but is
plastic enough to learn new words. These characteris-
tics require that GLM overcome catastrophic interfer-
ence and the stability-plasticity dilemma. Various solu-
tions have been proposed in the literature for overcom-
ing catastrophic interference in connectionist networks
[9]. In our approach we pretrain GLM on a subset of
most frequent words that are expected to capture the
regularities of the input space, which enable the ad-
dition of new words into the existing structure. The
stability-plasticity trade-off is modulated in GLM by
controlled (“see-saw” type) learning rate.

The model

Our model consists of three components (Fig.1). The
first component is a special recurrent neural network,
the word co-occurrence detector (WCD). The second
component, non-trained two-layer network, reduces the
data dimensions to a constant lower dimension. The
third component is a growing neural network that
shares some features with SOM [10]. It reads word
representations and forms a 2D layout of the growing
lexicon. The attempt to project high-dimensional word
vectors onto a 2D space is motivated by known proper-
ties of the human cortex [11].

An initial assumption of the model is that we have
available a pool of N (maximum lexicon size) localist
word representations that correspond to the entire lex-
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Figure 1: A diagrammatic sketch of the model. The bottom
half represents WCD; in the upper part, Z is the random,
dimension-reducing matrix of fixed connections, and GLM
is a SOM-like neural network (with codevectors my). The
solid links between layers of units represent activity propa-
gation via full connectivity weights, and dashed lines stand
for pattern transport (via one-to-one links).

icon considered. We also assume that at earlier stages
of learning, the known lexicon contains n < N words,
leaving thus the remaining units in WCD unutilized. As
new words become acquired at later stages, n will grow.
The whole learning process is split into two phases:
(1) initialization, during which GLM is initialized (pre-
trained) with a set of words (INy), and (2) growth, dur-
ing which new words are added to the existing lexicon.
The growth process stops when size N is reached.

Word co-occurrence detector. Learning in WCD
proceeds as follows (see [6] for an earlier version). As-
sume that at time ¢ the current word is ¢ (1 = 1,..,n),
and is represented by a localist vector o = [0y, ...,0nN]
in layer A. Previous word j is represented by vector
¢ = [¢1,...,cen] in layer B. The adaptable connections
between layers A and B serve to approximate the tran-
sitional probabilities between successive words, and as
such, they are trained by Hebbian-like learning that
normalizes them. Specifically, the link /;; is updated
to approximate P(j¢~1|i!), i.e., the probability that the
word j precedes the word i. At the same time, the link
rj; is updated to approximate P(it[j*~!), i.e., the prob-
ability that ¢ follows j. Word 4 is then characterized by
a concatenation of vectors
L = [lia, lioy o, in], T3 = [r14,7205 0 rNa), (1)
where 1; approximates the probability distribution of
words preceding i (left context), and r; the probability
distribution of words following ¢ (right context). The
learning rules (with 0 < 8 < 1) used for updating the
connections have the form
Alfj = 502(05 - lfj)a Arj'z' = /303'(02 - 7';1) (2)

At each iteration (started by randomly picking a
word from the pool), the distributed representation of

the word appears at layers A’ and B’, ready to be pro-
cessed further. 2

Random mapping. With a growing lexicon the
number of non-zero elements in q’s also grows, which
represents a difficulty for learning in GLM. Therefore,
we make the dimensionality of q’s constant by linearly
mapping them using a random matrix Z with normal-
ized Euclidean length of columns. Hence,

éi’i :Zqi; i = 1,2,...,”. (3)
It has been recently shown that a random linear trans-
formation of (sufficiently) high-dimensional data can
preserve enough structure of the original data, if the
output dimension is not too small [12]. Since Z (type
D x 2N) can be constant, its coefficients are not sub-
ject to adaptation and can thus be set a priori. In our
simulations, we chose D = 100. 3

Growing lexical map. During initialization, GLM
contains a subset of nodes (e.g., 40% of all available
nodes that fit into the underlying grid) and is first
trained on a portion of the lexicon. All units are re-
stricted to have grid positions and the map topology is
induced by a triangulation procedure which says: “con-
nect every pair of units in GLM, for which there exists
a point in the map being closest to these two units in
the map space.” As in SOM, every GLM unit has an
adaptable codevector my, associated with it. Like in
some other growing net models (referred to in [7]), ev-
ery GLM unit k£ updates its error value

Ey(t) = E(t — 1) + [|& — my 1%, (4)

whenever it becomes the winner for input q;. A high
E}, indicates that too many inputs map onto the node
k. Once a predefined number of inputs has been pre-
sented, a new unit is added to one of randomly chosen,
unoccupied grid spots around the unit with the largest
E;. * The new node becomes connected with surround-
ing units using the triangulation procedure (applied in
the neighborhood of the new node), and its codevector
is initialized as the average of the neighboring codevec-

2 All units are linear. At every iteration, the model per-
forms a sequence of operations each of which falls into one of
the 3 categories: pattern transport (denoted by an arrow),
activity propagation, and weight adaptation. The sequence
is as follows: (1) transport previous word w'™': A—B, (2)
pick up (transport) a new word w': P— A4, (3) adapt L and
R links (eq. 2), (4) A—B, (5) propagate o’ = Lc’ to layer
A, (6) A=A’ yielding qF, (7) pick up w? again: P—A, (8)
propagate ¢’ = Ro® to layer B, (9) B— B’ yielding qF, (10)
propagate (and process) q; = [qF, qf], further up (random
mapping, etc.), (11) go to step 1.

According to our PCA analyses of word representations,
100 dimensions cover more than 99% of the total variance.
High-dimensional models [1,2] also use a reduced space, typ-
ically with 100-300 dimensions.

4As we consider a rectangular grid, the maximum num-
ber of candidates is 8, but preference is given to one of the
4 nearest neighbors found along the grid lines.
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where [Npey| is the number of nodes linked to the new
node. After a unit insertion, all Es are reset to zero.

Node deletion was not implemented in GLM. This is
because new nodes are added only to areas that need
them, and so each node tends to participate in the rep-
resentation of one word or a blend of closest words in
GLM.

The GLM employs the SOM procedures [10] for win-
ner search and localized codebook update during initial-
ization. However, we use a considerably smaller neigh-
borhood radius A, in order to avoid heavy reordering
of the GLM codebook during development. For the
same reason, we use a smaller learning rate a. Both N,
and « follow the “see-saw” profile. Specifically, « is al-
ways set to increase after a new unit has been inserted,
and decays to zero toward the next insertion.

Experiment

We tested the model on the parental corpus of the
CHILDES database [13]. We extracted the 300 most
frequent words (roughly 500,000 word tokens) from the
Belfast dataset [14] (see [5] for a description of the
parental CHILDES corpus). All other words in the data
were treated as a single unknown word.

Setup of initialization and the growth process.
We ran 10 simulations using the off-line batch mode. °
By “off-line” we mean separate training of WCD and
GLM. By “batch” we mean the staircase-like lexicon
growth, which we found easier to implement and eval-
uate. At first, WCD was trained on data corpus with
an incremental lexicon from Ny = 200 to N = 300,
with a step 25 words. For every lexicon sized N,
(g = 0,1,...,4), after a single pass through the data
(using 8 = 0.05), the word representations were col-
lected in an Ny x 2N matrix Q, resulting in five differ-
ent data matrices. All five Qs were then transformed
to Q = ZQ. The set of matrices Q(O) through Q(4) was
used for all simulations. Once the input data was pre-
pared, GLM was initialized with a set of 800 units ran-
domly chosen from the underlying rectangular 45 x 45
grid (i.e., maximum number of map units U = 2025).

GLM was pre-trained (like a classical SOM) with Q(©
during 200,000 iterations. Pretrained GLM served as a
common starting point for every single simulation that
comprised four growth stages. Words were always ran-
domly picked out from the corresponding data set.
Fig.2 shows an example of GLM at the end of stage
g = 2, i.e., after 50 words were added. In all simula-
tions, the parameters for the growth phase were as fol-
lows: Every growth epoch took 50,000 iterations, and
within it, a new node could be inserted every 1,000
iterations (thus allowing the addition of maximum 50
nodes during every epoch). After every node insertion,

5This simplified training scenario helps to stabilize and
to speed up learning.
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Figure 2: A snapshot of GLM in the middle of the growth
process (only part of the map is shown due to space limit).
Words added to the map during growth are embedded in
parentheses. Either a label or a dot denotes an existing
node. Some of the earlier acquired words may have slightly
moved in GLM during growth, due to slight changes in their
representations. The complete map currently has 856 nodes.

« was raised to 0.05 and then linearly decreased to zero.
Similarly, neighborhood radius N, was raised to 2 and
then gradually decreased to zero until the next node
insertion.

Growing map evaluation. In each simulation, the
GLM configuration was saved at the end of every
growth epoch g. For map comparison, we focused on
evaluating how much the two maps M9 and M9? dif-
fered in their output responses when tested on words
common to both maps. The output of GLM for each
word ¢ was computed as a global output activity a =
[a1, ..., ay] centered around the winning unit ¢, yielding
a coarse-coded representation with components

if ke N,

otherwise,

exp(—[|G; — myl|/0),

ar(i) = { 0,

where N, denotes the neighborhood (its radius was set
to 5 in simulations) around the unit ¢, o was set to
1, and all my, corresponding to non-existing node po-
sitions were kept to zero. ¢ For every common word i,
both output responses a%' (i) and a¥2 (i) were computed.
If the responses of the two maps to this word were closer
to each other (in terms of Euclidean distance) than to
any other word j in the lexicon, i.e., if

lla? (i) — a®(3)|| = mjin{llagl(i) —a”(jll}y,  (7)

(6)

then word ¢ was considered to have preserved its repre-
sentation in the map. Otherwise, a mismatch occurred,
which increased the word mismatch (WM) evaluated as
WM = #mismatches/#words_checked.

Results. The GLM outputs for a pair of GLMs have
been compared for all combinations of M9' and M?92.
Values of all average WM values are shown in Fig.3.
As expected, all mismatches that occurred were related
to word couples whose labels were close to each other

5We also tried slightly different values of A, and o, but
the evaluation results were similar.
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Figure 3: Average WM for combinations of all pairs of
GLMs at various growth stages. Each bar corresponds to a
pair of GLMs whose outputs were compared on all common
words. The average WM increases to the highest at the 4-
0 pair. This suggests that word representations gradually
change during growth, yielding lower errors for temporarily
neighboring maps (such as a 3-2 pair).

in GLM. In most cases, the confused words belonged
to the same grammatical category (e.g., mummy and
daddy, or wouldn’t and didn’t); in other cases, they were
not grammatically related, though placed next to each
other (e.g., one and home, or the and our). A slight im-
provement could be obtained if all maps had been given
some extra fine-tuning in order to decrease the number
of ambiguous units (i.e., those having two labels).

Gradual changes of “old” word representations (and
consequently, their slight shifts in GLM during growth)
may correspond to the real learning situation in humans
who also adapt their word semantic representations as
they hear the words in newer contexts.

Discussion

In this paper, we present a growing lexical map, a model
that addresses the task of incremental acquisition of
the lexicon. As we consider word representations based
on context words, we solve the problem of increasing
word dimension by mapping the words to a constant
lower dimension, while preserving their mutual rela-
tionships. We tested the model on a portion of the
parental CHILDES corpus, and found that the model
is able to learn new words while highly preserving the
learned structure.

We consider it an important virtue of the model to al-
low the acquisition of new words without causing catas-
trophic intereference on learned structure. Human lan-
guage learners assimilate new words rapidly — according
to one estimate, the average child learns some 14,000
words by age six [15]. In our model, new words are
added to the existing structure across stages of growth.
The model has the ability to avoid catastrophic inter-
ference and the stability-plasticity dilemma.

As an initial attempt to model an incremental lexi-
con, we have used only a small vocabulary in our data
set (300 most frequent words). In principle, our model
can be used to simulate the development of a lexicon of
potentially larger size (with some modifications). This

is because the network does not have inherent resource
limitations (although the size of the underlying map
grid has to be chosen in advance). In previous self-
organizing connectionist models of language acquisi-
tion, researchers needed to face the resource limitation
problem, especially if they started with a limited num-
ber of nodes in training [16]. It is empirically debatable
whether the growing network architecture as the one
in our model has biological plausibility (but see [17]),
but it certainly has psychological plausibility — for one
thing, we know that working memory capacity gradu-
ally develops in young children.
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