
     Neurolinguistic Computational Models 

                    ABSTRACT  

  It is tempting to think of the brain as functioning very much like 
a computer. Like the digital computer, the brain takes in data and 
outputs decisions and conclusions. However, unlike the compu-
ter, the brain does not store precise memories at specifi c locations. 
Instead, the brain reaches decisions through the dynamic interac-
tion of diverse areas operating in functional neural circuits. The role 
of specifi c local areas in these functional neural circuits appears to 
be highly fl exible and dynamic. Recent work has begun to provide 
detailed accounts of both the overall circuits supporting language and 
the detailed computations provided in smaller neural areas. These 
accounts take the shape of both structured and emergent models.   

  22.1.     INTRODUCTION 

 Recent decades have seen enormous advances in lin-
guistics, psycholinguistics, and neuroscience. Piecing these 
advances together, cognitive scientists have begun to for-
mulate mechanistic accounts of how language is processed 
in the brain. Although these models are still very prelimi-
nary, they allow us to integrate information derived from a 
wide variety of studies and methodologies. They also yield 
predictions that can drive the search for specifi c neurolin-
guistic processing mechanisms.  

  22.2.     THE COMPUTER AND 
THE BRAIN 

 Current neurocomputational models build on a core set 
of ideas deriving from the fi eld of artifi cial intelligence, as 
it matured in the 1960s. At that time, researchers believed 

that one could view the brain as a type of digital computer. 
The four crucial design features of the digital computer 
are: binary logic, seriality of computation, a fi xed memory 
address space, and modularity of program design. Given 
this, we can ask whether the human brain also relies on 
binary logic, seriality, a fi xed address space, and modularity. 

 Neuroscience has provided fairly clear answers to this 
question. First, we know that individual neurons do indeed 
fi re in an on–off binary fashion. So this feature shows a close 
match. However, unlike the serial computer, the brain oper-
ates in a massively parallel fashion. Imaging studies have 
shown that, at a given moment in time, neurons are active 
throughout the brain. Because of this massive parallelism, 
the binary functioning of individual neurons takes on a very 
different role in the brain, serving to modulate decisions and 
activations, rather than making simple yes–no choices in a 
serial fashion. But it is not the case that the full parallel acti-
vations in the brain are equally in consciousness at a given 
moment. Although the brain has no central processing unit 
(CPU), there is a system of interrelated executive control 
processes localized in the frontal cortex that operates with 
additional support from posterior memory areas. We can 
think of this frontal system as a neural CPU. This system 
imposes its own form of seriality on thinking, allowing only 
a limited number of ideas or percepts to be active in working 
memory or focal attention at a given time. So, although the 
brain is massively parallel, it achieves a certain limited form 
of seriality for processes in focal attention. 

 Modularity is a crucial feature of program design in 
the digital computer. Modularity is not hard wired into the 
computer. Rather, it is enforced by the structure of com-
puter languages and the methods used by particular pro-
grams. Some form of modularity is also clearly present in 
the brain. During neuroembryonic development, cells that 
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are initially undifferentiated migrate from the germinal 
matrix to specifi c cortical and sub-cortical areas. These 
migrating cells maintain their connections to other areas 
as they migrate but also begin to differentiate as they move 
to particular cortical areas. Thus, some cortical differentia-
tion is present already at birth. The brain is initially highly 
plastic. Over time, as we will see in more detail later, areas 
become increasingly committed to particular computational 
functions. However, as Bates  and colleagues  ( Elman  et al ., 
1996 ) have emphasized,  “ neural modules are made not 
born. ”  In this sense, modularity is an emergent fact in the 
brain, just as it is in computer programming. This insight 
can also help us understand the organization of processing 
modules in bilingualism ( Hernandez  et al. , 2005 ).

The biggest difference between the brain and the com-
puter is the fact that the neural CPU cannot access memory 
via the systematic method used by the computer CPU. When 
a program is loaded onto a computer, it can reliably search 
in a particular memory location for each important piece of 
information. The neural CPU cannot rely on this scheme. In 
the late 1970s, there was an attempt to identify a system for 
memory addressing that might indeed parallel the system 
using by the digital computer ( John, 1967 ). One idea was that 
individual neurons might be identifi ed on the basis of codes 
embedded in the expressed portion of the DNA or RNA. 
If this were true, one might expect that memories could be 
encoded directly in the cells. To test this, biologists taught 
small planaria worms to navigate a series of turns in a maze 
to get some food. Once the worms had been trained, they 
ground them up and fed them to other untrained planaria. The 
hope was that the memories stored in the DNA of the trained 
planaria would be passed on to the untrained worms. At fi rst, 
the results were promising. But later it appeared impossible 
to replicate the experiments outside of the original labo-
ratories. The results of these experiments were chronicled 
in a series of papers called  “ The Worm Runner ’ s Digest. ”  
Looking back, it seems remarkable that scientists could have 
thought that memories would be encoded this way. However, 
at that time, the strength of the analogy between the brain and 
the computer was so strong that the experimental hypothesis 
seemed perfectly reasonable. 

 The problem of reliably accessing stored memories is part 
a more general problem in neural computation. Because indi-
vidual neurons do not have addresses, they cannot be given 
unique names. We cannot imagine that a particular neuron 
represents  “ a yellow Volkswagen ”  or that another neuron rep-
resents  “ the past tense suffi x. ”  It is clearly impossible to pass 
symbolic information down neuronal axons. Instead, neurons 
must acquire a functional signifi cance that arises from their 
role as participants in connected neural networks. In part, 
this is because neurons are not as reliable as silicon. Neurons 
may die and, in some areas of the brain, new neurons may 
be born. Neural fi ring is subject to a variety of disruptions 
caused by conditions varying from fatigue to epilepsy. In 

extreme cases, victims of stroke or other injuries may lose 
large portions of their brain, but maintain the ability to talk 
and think. However, if a computer has faults in even a few 
silicon gates in memory, it will be unable to function at all. 
Thus, the neural CPU must use a very different, more fl ex-
ible, method for addressing memory. It was the realization of 
this fundamental fact that led in the 1980s to the rise of neu-
ral network models ( Grossberg, 1987 ) as the major method 
for modeling the brain. All current work in neurocomputa-
tional models is illuminated by this basic insight.  

  22.3.     STRUCTURED MODELS 

 There are two ways in which we can allow facts about 
the brain to constrain our neurolinguistic models. One 
method relies on structured modeling and the other on 
unstructured or emergent modeling. Within the framework 
of structured modeling, we can distinguish between mod-
ule-level models and neuron-level models. 

  22.3.1.     Module-Level Structured Models 

 In this section, we will examine work on module-level 
models. These models attempt to localize processing in par-
ticular neural modules. On an anatomical level, it is clear 
that the brain is rich in structure. For example, there are 
at least 54 separate processing areas in visual cortex ( Van 
Essen  et al. , 1990 ). But it is not clear whether these areas 
function as encapsulated modules or rather as interactive 
pieces of functional networks. 

 Evidence for neurolinguistic modules has come from three 
sources: aphasiology, brain imaging, and developmental dis-
orders. The oldest of these sources is the evidence from dif-
fering patterns of language defi cit in aphasia. One can study 
patients with lesions of different types in the hope of identi-
fying double disassociations between information-processing 
skills and lesion types. For example, some patients will have 
damaged prosodic structure, but normal segmental phonol-
ogy. Other patients will have damaged segmental structure, 
but normal prosody. This pattern of results would provide 
strong support for the notion that there is a localized cogni-
tive module for the processing of prosody. In practice, how-
ever, evidence for such double dissociations is diffi cult to 
obtain without post hoc partitioning of subject groups. But 
this partitioning itself casts doubt on the underlying assump-
tions regarding modularity and dissociability. 

 A familiar example of this type of model for language is
the  Geschwind (1979)  model of connected language mod-
ules. This model is designed to account for how we can lis-
ten to a sentence and then imitate it or reply to it. According 
to this model, language comprehension begins with the 
receipt of a linguistic signal by auditory cortex in the tem-
poral lobe. This information is then passed on to Wernicke ’ s 
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area for lexical processing. From here, information is passed 
over the arcuate fasciculus to Broca ’ s area, where the reply 
or imitation is planned. Finally, the output signal is sent to 
motor cortex for articulation. This model treats processing 
as the passing of information between modules. According 
to this model, damage in a given area will predict loss of the 
related ability. Thus, damage to Broca ’ s area should lead to 
Broca ’ s aphasia. Unfortunately, the neurological assump-
tions of this model have proven problematic. Originally, 
Wernicke ’ s area was thought to be an association area at the 
juncture of the temporal and parietal lobes. However, there 
is little evidence that this area functions as association cor-
tex with any specifi c linkage to lexical or linguistic process-
ing. Some other components of the Geschwind model are 
less problematic. In particular, it is clear that sounds are 
controlled by temporal auditory cortex, and that the fi nal 
stages of speech output are controlled by motor cortex. 

 The role of Broca ’ s area in the Geschwind model is also 
problematic. Although Broca ’ s area is well defi ned anatom-
ically, it has not been possible to locate specifi c perisylvian 
areas that are associated with specifi c aphasic symptoms or 
with specifi c patterns of disruption of naming in direct cor-
tical stimulation ( Ojemann  et al. , 1989 ). However, recent 
work using functional magnetic resonance imaging (fMRI) 
methods has begun to clarify this issue. It has been shown 
that processing in inferior frontal gyrus (IFG) involves three 
clusters: (1) tasks emphasizing semantic processing with 
activation in anterior IFG in the  pars orbitalis ; (2) phono-
logical tasks with activation in the posterior superior IFG; 
and (3) syntactic tasks with activation between the other 
two areas in middle IFG or  pars triangularis , Brodman ’ s 
area 44/45 (BA) ( Bookheimer, 2002 ;  Hagoort, 2005) . These 
separations are not sharp and absolute, but they do seem to 
represent interesting differentiations in IFG that correspond 
with traditional linguistic distinctions. However, we must 
remember that the subtractive methodology used to analyze 
fMRI data tends to underestimate the contribution of other 
areas of the brain that are also involved in a particular task. 

 A fi nal type of evidence for neurolinguistic modules 
comes from studies of children with developmental disor-
ders. Here, researchers have applied the same logic of dou-
ble dissociations used in the study of aphasia. In particular, 
it is often argued that children with Williams syndrome 
show an intense cognitive defi cit with no serious disruption 
of language functioning. In contrast, children with Specifi c 
Language Impairment (SLI) are said to have intact cognitive 
functioning with marked impairment in language. However, 
this supposed double dissociation is not so clear in practice. 
Children with Williams syndrome do have effective control 
of language, but they achieve this control in ways that are 
far from normal ( Karmiloff-Smith  et al. , 1997 ; see Chapter 
36, this volume). Moreover, many children with SLI also 
have problems with related areas of conceptual functioning 
(e.g., in temporal sequence processing) and there have not 

yet been any successful attempts to link the module that is 
supposedly damaged in SLI to any particular brain region. 

 A somewhat different approach to localization views 
alternative cortical areas as participating in functional neural 
networks. In this framework, a particular cortical area may 
participate in a variety of functional networks. Within each 
of these various networks, the area would basically serve a 
similar computational role. However, because processing 
demands vary across networks, the specifi c products of this 
processing will vary depending on the network involved. 
 Mason and Just (2006)  argue that fMRI studies have pro-
vided evidence for fi ve functional neural networks for dis-
course processing:   

  1.     A right hemisphere network involving middle and 
superior temporal cortex that computes a coarse semantic 
representation.  

  2.     A bilateral network in dorsolateral prefrontal cortex 
(DLPFC) that monitors conceptual coherence.  

  3.     A left hemisphere network involving IFG and left 
anterior temporal for text integration.  

  4.     A network involving medial frontal areas bilaterally and 
right temporal/parietal areas for perspective taking.  

  5.     A bilateral, but left-dominant, network involving the 
intraparietal sulcus for spatial imagery processing.    

 In practice, it is diffi cult to understand the exact separa-
tion between these various processes. For example, there 
seems to be a conceptual overlap between the second and 
third of these networks. Also, it is not clear whether the addi-
tional activation recorded in right hemisphere sites indicates 
basic discourse processing or a spillover of processing from 
the left hemisphere. And it is not clear whether these areas 
would be involved in different ways for comprehending writ-
ten versus spoken discourse. Furthermore, networks involved 
in broader conceptual tasks such as perspective taking proba-
bly involve more than just a few cortical areas. To the degree 
that perspective taking triggers empathy and body mapping 
( MacWhinney, 2005 ), it will also rely on additional frontal 
areas, basal ganglion, amygdala, and mirror neuron systems 
in both frontal and parietal cortex. Despite these various 
issues, it seems profi table to continue exploring the interpre-
tion of fMRI results in terms of interlocking functional neural 
networks. These models allow researchers to study functional 
localization without forcing them to think of local areas as 
encapsulated neural modules.  

  22.3.2.     Neuron-Level Structured Models 

 Structured modeling can also be conducted on a level 
that avoids direct reference to modules.  Morton ’ s (1970)  
logogen model was a particularly successful model of this 
type. At the center of each logogen network was a master 
neuron devoted to the particular word. Activation of this 
central unit could then trigger further activation of units 
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encoding its phonology, orthography, meaning, and syntax. 
Pushing the notion of spreading neural activation still fur-
ther,  McClelland and Rumelhart (1981)  developed an inter-
active activation (IA) account of context effects in letter 
perception. IA models have succeeded in providing clear 
accounts for a wide variety of phenomena in speech 
production, reading, auditory perception, lexical semantics, 

and second language learning. Because each unit in these 
models can be clearly mapped to a particular linguistic 
construct, such as a word, phoneme, or semantic fea-
ture, the generation of predictions from IA models is very 
straightforward (see Box 22.1). Because these models do 
well at representing the processes of activation and com-
petition, they usually provide good models of experimental 

The IA account from Levelt (2004) illustrates the activation of 
the word  “ select ”  and its surrounding syntactic context. The 
diagram shows how, on the level of form, the word  “ select ”  is 
composed of phonemes that activate specifi c syllables. Here 
[l � k] competes for activation with [l � kt]. Also, the word has 
a weak–strong stress pattern. On the level of the lemma, the 
word has the syntactic feature of present tense and specifi es a 

subject and an object. At this level, it competes with forms like 
 “ choose ”  and  “ elect. ”  Finally on the conceptual level, notions 
of  selecting ,  choosing , and  electing  are all activated, but only 
selecting  is chosen in this case. 

 Levelt, W.J.M. (2004). Models of word production.  Trends in Cognitive 
Sciences, 4 , 223–232.      

    Box 22.1   Interactive-activation account of speech production
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data with both healthy and aphasic individuals. Moreover, 
the core idea of IA maps up well with what we know about 
how neurons interact in terms of excitatory and inhibitory 
synaptic connections.

  IA models suffer from a fundamental weakness. It is dif-
fi cult to imagine how real neurons could achieve the local 
conceptual labeling required by these models. How could 
the learner manage to tag one neuron as  “ fork ”  and another 
neuron as  “ spoon? ”  How could the learner manage to con-
nect up exactly these specifi c cells to the correct phonemic 
components? Moreover, should we really imagine that each 
word or concept is represented by one and only one cen-
tral neuron? Given the fact that neurons are subject to death 
and replacement, would we not expect to fi nd even normal 
speakers continually losing words or phonemes when their 
controlling cells die? If there were some learning method 
associated with this architecture, these various problems 
with IA models could be solved. However, it is not clear 
how one could formulate a learning algorithm for this type 
of localist model.   

  22.4.     EMERGENT MODELS 

 To address this problem,  Rumelhart  et al . (1986)  devel-
oped a neural network learning algorithm called back prop-
agation. This algorithm makes no assumptions regarding 
 “ labels ”  on neurons. Instead, the functioning of individual 
neurons emerges through a competitive training process in 
which connections between neurons are adjusted in propor-
tion to the mismatch (error) in the input-to-output mapping. 
Because there are no labels on units, there is a tendency for 
information controlling a given pattern to become distrib-
uted across the network. This distribution of information can 
be characterized as parallel distributed processing (PDP). 
Because PDP models based on back propagation algorithm 
are easy to develop and train, this framework has gener-
ated a proliferation of models of language learning. PDP 
models have been successfully applied to a wide variety of 
language learning areas including the English past tense, 
Dutch word stress, universal metrical features, German par-
ticiple acquisition, German plurals, Italian articles, Spanish 
articles, English derivation for reversives, lexical learning 
from perceptual input, deictic reference, personal pronouns, 
polysemic patterns in word meaning, vowel harmony, his-
torical change, early auditory processing, the phonological 
loop, early phonological output processes, ambiguity resolu-
tion, relative clause processing, word class learning, speech 
errors, bilingualism, and the vocabulary spurt. 

  22.4.1.     Self-Organizing Maps 

 Although PDP models succeed in capturing the distrib-
uted nature of memory in the brain, they do this by relying 
on reciprocal connections between neurons. In fact, there is 

little evidence that individual neurons are connected in this 
way. Also, PDP relies on back propagation of an explicit 
error correction signal. Again, evidence that this is present 
is fairly weak.  MacWhinney (2000a)  argued that distributed 
PDP models fail to provide an emergent localist representa-
tion of the word, making further morphological and syntac-
tic processing diffi cult. As we noted earlier, one of the great 
strengths of IA models is their ability to provide localist 
representations for words and other linguistic constructs. 
However, because these forms cannot be learned from the 
input, researchers have turned to back propagation and PDP 
to provide learning mechanisms. A more ideal solution to 
the problem would be to rely on a learning algorithm that 
managed to induce fl exible, localist representations that 
correspond in a statistical sense to concepts and words. 

 The self-organizing feature map (SOFM) algorithm of 
 Kohonen (2001)  provides one way of tackling these prob-
lems. This framework has been used to account in great 
detail for the development and organization of the visual sys-
tem ( Miikkulainen et al., 2005 ). Applications of the model to 
language are more diffi cult, but are also showing continual 
progress. To illustrate the operation of SOFM for language, 
let us consider the DevLex-II word learning model of Li  et al.  
(2007). This model uses three local maps to account for word 
learning in children: an auditory map, a concept map, and an 
articulatory map (see Box 22.2). The actual word representa-
tions are computed from the contextual features derived from 
realistic child–parent interactions in the CHILDES database 
( MacWhinney, 2000b ). In effect, this meant that words that 
occurred in similar sentence contexts are represented simi-
larly, and consequently organized by SOFM in nearby neigh-
borhoods in the map. For example, nouns were organized 
together because they appeared consistently in slots such as 
 “ my X ”  or  “ the X. ”  These representations can also be cou-
pled with perceptual features to capture the child ’ s early 
perceptual experiences ( Li  et al ., 2004 ).

  Self-organizing maps offer a promising method for 
achieving emergent localist encodings. There are also sev-
eral ways in which the capacity of maps can be expanded 
through the addition of neurons or overlays with new cod-
ing features. Which of these methods is actually used in 
the brain remains unclear. We know that the brain has an 
enormous capacity for the storage of memories. However, 
effi cient use of this storage space may rely on hippocam-
pal storage mechanisms to organize memories for effi cient 
retrieval (   Miikkulainen et al., 2005 ). We will discuss this 
issue further in the fi nal section.  

  22.4.2.     Syntactic Emergence 

 Although these emergentist models have succeeded in 
modeling a variety of features in word learning and phonol-
ogy, it has been more diffi cult to apply them to the task of 
modeling syntactic processing.  Elman ’ s (1990)  simple recur-
rent network (SRN) model uses recurrent back-propagation 
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     Box 22.2              DevLex-II: A SOFM-based model 
of lexical development

  

Auditory map Articulatory map

Hebbian Learning
(Comprehension)

Hebbian Learning
(Production)

Semantic map

Word Meaning Representation

Self-Organization

Self-OrganizationSelf-Organization 

Input phonology  Phonemic sequence
      

The DevLex-II model is a neural network model of early 
lexical development based on SOFM ( Li  et al. , 2007 ). The 
model has three sub-networks (maps) to process and organ-
ize linguistic information: Auditory map that takes the 
phonological information of words as input, semantic map 
that organizes the meaning representations based on lexical 
co-occurrence statistics, and articulatory map that outputs 
phonemic sequences of words. The semantic map is con-
nected to both the auditory map and the articulatory map 
through associative links that are trained by Hebbian learn-
ing. Such connections allow for the effective modeling 
of comprehension (auditory to semantic) and production 
(semantic to articulatory) processes in language acquisition. 

 Li, P., Zhao, X.,  &  MacWhinney, B. (2007). Dynamic self-organi-
zation and early lexical development in children.  Cognitive 
Science, 31 , 581–612.      

connections to update the network ’ s memory after it reads 
each word. The network ’ s task is to predict the next word. 
This framework views language comprehension as a highly 
constructive process in which the major goal is trying to 
predict what will come next. An alternative to the predictive 
framework relies on the mechanisms of spreading activation 
and competition. For example,  MacDonald  et al.  (1994)  
have presented a model of ambiguity resolution in sentence 
processing that is grounded on competition between lexical 
items. Models of this type do an excellent job of modeling 
the temporal properties of sentence processing. Such mod-
els assume that the problem of lexical learning in neural 
networks has been solved. They then proceed to use localist 
representations to control IA during sentence processing. 

 Another lexicalist approach uses a linguistic framework 
known as Construction Grammar. This framework empha-
sizes the role of individual lexical items in early grammati-
cal learning ( MacWhinney, 1987 ). Early on, children learn 

to use simple frames such as  my  �  X  or  his  �  X  to indicate 
possession. As development progresses, these frames are 
merged into general constructions, such as the possessive 
construction. In effect, each construction emerges from a 
lexical gang. Sentence processing then relies on the child ’ s 
ability to combine constructions online. When two alter-
native constructions compete, errors appear. An example 
would be * say me that story , instead of  tell me that story . 
In this error, the child has treated  “ say ”  as a member of the 
group of verbs that forms the dative construction. In the 
classic theory of generative grammar, recovery from this 
error is supposed to trigger a learnability problem, since 
such errors are seldom overtly corrected and, when they 
are, children tend to ignore the feedback. Neural network 
implementations of Construction Grammar address this 
problem by emphasizing the direct competition between 
 say  and  tell  during production. The child can rely on posi-
tive data to strengthen the verb  tell  and its link to the dative 
construction, thereby eliminating this error without correc-
tive feedback. In this way, models that implement compe-
tition provide solutions to the logical problem of language 
acquisition. 

 These various approaches to syntactic learning must 
eventually fi nd a way of dealing with the compositional 
nature of syntax. A noun phrase such as  “ my big dog 
and his ball ”  can be further decomposed into two seg-
ments conjoined by the  “ and. ”  Each of the segments is 
further composed of a head noun and its modifi ers. Our 
ability to recursively combine words into larger phrases 
stands as a major challenge to connectionist modeling. 
One likely solution would use predicate constructions to 
activate arguments that are then combined in a short-term 
memory buffer during sentence planning and interpreta-
tion. To build a model of this type, we need to develop a 
clearer mechanistic link between constructions as lexi-
cal items and constructions as controllers of the on-the-fl y 
process of syntactic combination.  

  22.4.3.     Lesioning Emergent Models 

 Once one has constructed networks that are capable of 
learning basic syntactic processes, it is an easy matter to test 
the ability of these models to simulate aphasic symptoms by 
subjecting the model to lesions, just as the brain of the real 
aphasic person was subjected to real lesions. Lesioning can 
be done by removing hidden units, removing input units, 
removing connections, rescaling weights, or simply adding 
noise to the system. It has been shown that these various 
methods of lesioning networks all produce similar effects 
( Bullinaria  &  Chater, 1995) . However, work on lesioning 
of models can also capture patterns of dissociation. For 
example, in lesioned models, high-frequency items are typi-
cally preserved better than low-frequency items. Similarly, 
patterns with many members will be preserved better than
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patterns with fewer members, and items with associations 
to many neighbors better than items with fewer neighbors. 

 A particularly interesting application of the network lesion-
ing technique is the model of deep dyslexia developed by 
 Plaut and Shallice (1993) . The model had connections from 
orthography to semantics and from semantics to phonology, 
as well as hidden unit layers and layers of clean-up units for 
semantics and phonology. Lesions to the orthographic layer 
led to loss of the ability to read abstract words. However, 
lesions to the semantic clean-up units led to problem in read-
ing concrete words. This work illustrates how one could use 
the analysis of lesions to emergent models to elaborate ideas 
about area-wide patterns of connectivity in the brain. 

 Like models based on back propagation, SOFM-
based models can also be used to study lesion and recov-
ery from lesion.  Li  et al.  (2007)  showed how DevLex-II, 
when lesioned with noise in the semantic and phonologi-
cal representations and their associative links, can display 
early plasticity in the recovery from lesion induced at dif-
ferent time points of learning. Their lesion data matched 
up with empirical fi ndings from children who suffer from 
early focal brain injury with respect to lexical learning and 
U-shaped behavior ( MacWhinney  et al. , 2000 ).   

  22.5.     CHALLENGES AND
FUTURE DIRECTIONS 

 Despite the various successes of both structured and emer-
gent models, neurolinguistic computational models continue 
to suffer from a core limitation. This is the failure of these 
models to decode the basic addressing system of the brain. 
However, recent work in the area of embodied cognition may 
be pointing toward a resolution of this problem. This work 
emphasizes the ways in which the shape of human thought 
emerges from the fact that the brain is situated inside the 
body and the body is embedded in concrete physical and 
social interactions. In neural terms, embodied cognition relies 
heavily on a perception-action cycle that works to interpret 
new perceptions in terms of the actions needed to produce 
them. For example, when watching an experimenter grab a 
nut, a monkey will activate neurons in motor cortex that cor-
respond to the areas that the monkey itself uses when grab-
bing a nut. These so-called mirror neurons (see Chapter 23) 
form the backbone of a rich system for mirroring the actions 
of others by interpreting them in terms of our own actions. 

 A variety of recent computational models have tried to 
capture aspects of these perceptual-motor linkages. One 
approach emphasizes the ways in which distal learning 
processes can train action patterns such as speech produc-
tion on the basis of their perceptual products ( Westermann 
 &  Miranda, 2004 ). A very different approach, developed 
in MacWhinney (2005), works out the consequences of 
the online construction of an embodied mental model of a

sentence for linguistic structures. This account views the 
frontal lobes as working to encode a virtual homunculus 
that can be used to enact the various actions, stances, and 
perspective shifts involved in linguistic discourse. 

 By itself the notion of an embodied perceptual-motor 
cycle will not solve the core problem of memory addressing 
in the brain. However, it seems to point us in a very interest-
ing direction. Starting with the core observation that the brain 
is located in the body and fully connected to all the senses 
and motor effectors, we could imagine that the primary 
code used in the brain might be the code of the body itself. 
When we look at the tonotopic and retinotopic organization 
of sensory areas or the multiple representations of effec-
tors in motor areas, this view of the brain as an encoder of 
the body seems transparently true. However, it is less clear 
how this code might extend beyond these primary areas for 
use throughout the brain. One radical possibility is that the 
brain may rely on embodied codes throughout and that the 
body itself could provide the fundamental language of neural 
computation.  
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