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This study examined the role of covert semantic classes or 'cryptotypes” in determining
children’s overgeneralizations of reversive prefixes such as un- in *unsqueeze or
*unpress. A training corpus of 160 English verbs was presented incrementally to a
backpropagation network. In three simulations, we showed that the network developed
structured representations for the semantic cryptotype associated with the use of the
reversive prefix un-. Overgeneralizations produced by the network, such as *unbury or
*unpress, match up well with actual overgeneralizations observed in human children,
showing that structured cryptotypic semantic representations underlie this overgeneraliz-
ation behaviour. Simulation 2 points towards a role of lexical competition in morphological
acquisition and overgeneralizations. Simulation 3 provides insight into the relationship
between plasticity in network learning and the ability to recover from overgeneralizations.
Together, these analyses paint a dynamic picture in which competing morphological devices
work together to provide the best possible match to underlying covert semantic structures.
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1. Introduction

In one of the classic papers of early cognitive linguistics, Whorf (1956, p. 71)
argued that links between language and culture are often most fully revealed in
covert grammatical categories. Using the English reversive prefix un- as an
illustration, Whorf called attention to the simple fact that English speakers can
produce a wide range of verbs with this prefix, such as uncoil, uncover, undress,
unfasten, unfold, unlock, untie or untangle. However, there are many other seemingly
parallel forms that are not allowed, such as *unbury, *unfill, *ungrip, *unhang,
*unpress, *unspill, *unsqueeze or *untighten.! Why are some of these derivations
permitted and others not? Whorf believed that there was a category underlying all
these formations that made its presence known only through the restrictions that
it placed on the prefix un-. In contrast to ‘overt’” or ‘phenotypic’ grammatical
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categories, such as the past tense (-ed) or the plural (-s), this category was not
marked by a surface morpheme, but only by its effects on the licensing of possible
combinations. Because this category functions only covertly, Whorf called it a
‘cryptotype’.

Whorf further noted that, for this category: ““we have no single word in the
language which can give us a proper clue to its meaning or into which we can
compress this meaning; hence the meaning is subtle, intangible, as is typical of
cryptotypic meanings’’. None of the standard categories of Latin grammar can be
used as a basis for a rule to tell us when we can use un- and when we cannot. T he
distinction is not grounded on some single feature such as ‘transitivity’, ‘iterativity”
or ‘intentionality’. Instead, according to Whorf, the set of verbs that can be prefixed
with un- seems to share a ““covering, enclosing, and surface-attaching meaning”’.
Only verbs that partake in this cryptotype are licensed to receive the un- prefix.

We believe that the study of small semantic fields, such as those underlying
Whorfian cryptotypes, can have four important implications for connectionist
models of language learning:

(1) Understanding semantic structures. The process of constructing working
simulations for specific word derivations can force us to restate the notion of
a cryptotype in detailed mechanistic terms. In these simulations, distributed
representations play an important role in replacing the older analytic
frameworks of categories and rules (Lakoff, 1987; MacW hinney, 1989).

(2) Semantic grounding. More generally, it is important that connectionist models
of language learning be grounded on more complete and realistic semantic
analyses (Cottrell & Plunkett, 1994). Analysis of small semantic fields is a good
starting point for providing a detailed semantic grounding to neural network
models.

(3) Productivity and overgeneralization. By attempting to model the empirical data
on derivational overgeneralizations such as *unsqueeze or *unspill, we can
deepen the link between models and complex developmental data (Bowerman,
1982; Clark et al., 1995).

(4) Competition. By looking not only at a single prefix such as un, but also at
competing prefixes such as dis- or mis-, we can obtain a better understanding
of how cryptotypes work within the larger framework of language production.

Before presenting our simulations, we would like to consider each of these four
issues in further detail. In each case, we are interested in ways in which this initial
study of a single, limited semantic field can provide us with conceptual
underpinnings for a more broadly based, semantically grounded, connectionist
model of language processing and language acquisition.

1.1. Understanding Semantic Structures through Connectionist Modelling

Whorf’s understanding of the cryptotype which licenses the reversive prefix un- is
based on a “‘covering, enclosing, and surface-attaching meaning’’. Should this
meaning be viewed as a single unit, as three separate meanings or as a cluster of
related meanings? Do these notions of attachment and covering exhaust the
subcomponents of the cryptotype, or are there additional underlying components?
Subsequent analyses have suggested certain additional components not initially
mentioned by Whorf. For example, Marchand (1969) and Clark etal. (1995) argue
that all verbs that license un- involve a change of state. In addition, these verbs
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involve a transitive action that has a direct object. This transitive action typically
reaches a terminal point in time, in which case it is called a ‘telic’ verb;
alternatively, it reaches some end-state or result, in which case it is called an
‘accomplishment’ verb (Vendler, 1967). When the meaning of a verb does not
involve a change of state or does not indicate telicity or accomplishment, then the
verb cannot take un-. T herefore, verbs such as *unswim, *unplay and *unsnore are
ill-formed semantically, because the base forms involve continuous actions without
a terminal point or end-state that could be reversed (Horn, 1988).

A connectionist implementation of the semantics of the reversive cryptotype
provides us with a natural way of capturing these insights in a formal mechanism.
In this implementation, there can be several ‘mini-cryptotypes’ which work
together as interactive ‘gangs’ (McClelland & Rumelhart, 1981) to support the
formation of the larger cryptotype. T hese mini-cryptotypes are not in competition;
instead, they work in terms of summed activation to support the licensing of un-
for a particular verb. For example, ‘enclosing’ verbs, such as coil, curl, fold, reel, roll,
screw, twist and wind, all seem to share a meaning of ‘circular movement’. Another
mini-cryptotype includes verbs such as bind, buckle, fasten, latch, leash, lock, strap,
tie and zip, which have a ‘binding” or ‘locking” meaning. A third mini-cryptotype
includes ‘covering’ verbs such as cover, dress, mask, pack, veil and wrap. Finally, a
fourth mini-cryptotype includes ‘attaching’ verbs, which usually involve hand
movement, such as clasp, fasten, hook, link, plug and tie.

T hese mini-cryptotypes or mini-gangs can interact cooperatively, because they
are closely related to one another. For example, the verb screw in unscrew may be
viewed as having both a meaning of circular movement and a meaning of binding
or locking, while the verb zip in unzip may be viewed as sharing both the
‘binding locking’ meaning and the ‘covering’ meaning. Moreover, both screw and
zip involve hand movements. In addition to such overlaps of semantic features, a
verb may also have a feature in its inherent meaning at varying degrees of strength.
For example, the verb wrap may be viewed as having the covering meaning.
However, in some cases, the action of wrapping may also involve circular
movements. These properties of feature overlap and degraded featural composition
lend themselves naturally to the distributed representations used in neural
networks. While it seems difficult for symbolic representations to come up with
satisfactory accounts for cryptotypes, the distributed representations and the
non-linearities of neural networks seem to be ideal for handling the elusiveness and
gradience of these semantic structures.

1.2. Semantic Grounding

T he second issue that we address in this work is the role of semantic grounding in
neural network modelling. In the past decade, there has been heated debate on
connectionist and symbolic models of learning in the acquisition of the English past
tense (Hoeffner, 1992; MacWhinney & Leinbach, 1991; Pinker & Prince, 1988;
Plunkett & Marchman, 1991, 1993; Rumelhart & M cClelland, 1986). An important
limitation of the connectionist simulations involved in this debate has been that the
input to the network included only phonological information but no true semantic
information. The use of only phonological information in these simulations was
based largely on considerations of practicality and simplicity. However, this
simplification is at odds with the basic emphasis that connectionist models place on
non-modular cue interaction in word recognition and word production.
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In an effort to broaden the connectionist approach to word formation, Cottrell
and Plunkett (1991), Hoeffner (1992) and MacWhinney (1996a) have used
randomly generated input that is supposed to represent semantic structure.
Although this inclusion of a random, schematized semantic structure helps to bring
us closer to a realistic simulation, it is clear that we would be on much more solid
ground if we could code our input data in terms of descriptively meaningful
semantic representations. Because of the primitive state of the art in computational
lexicography, we cannot do this for large segments of vocabulary. However, if we
work with small, well-defined areas of the lexicon, then it is possible to construct
a reasonable and coherent semantic input set. T he construction of such a realistic
semantic input set is one of the principal goals of the current work.

1.3. Productivity and Overgeneralization

The third issue to which this work relates is the issue of productivity and
overgeneralization in language development. If speakers simply learned verbs such
as untie and uncoil by rote and showed no awareness of the productivity of the
cryptotype, then we could easily dismiss Whorf’s description as a figment of an
overheated linguistic imagination. However, Whorf was careful to remind us that,
despite the difficulty that linguists experience in characterizing this cryptotype,
native speakers of Engish have an intuitive feel for which verbs can and cannot be
prefixed with un-. He presented a thought experiment based on what is now a
standard procedure in recent psycholinguistic investigations (see, for example,
Gropen et al., 1992; Pinker et al., 1987). Whorf reasoned that, if we are told that
flimmick means ‘to tie a tin can to something’, then we are willing to accept the
sentence ‘He unflimmicked the dog’ as expressing the reversal of the ‘flimmicking’
action. However, if we are told that flimmick means ‘to take apart’, then we will
not accept ‘He unflimmicked the puzzle’ as describing the act of putting a puzzle
back together. Whorf took this as evidence in support of his claim that we all
possess an intuitive grasp of the cryptotype that underlies morphological
productivity for the reversive.

Children’s overgeneralization errors also provide evidence of the reality of the
cryptotype. Bowerman (1982, 1983, 1988) showed that the learning of un- goes
through a four-staged developmental pattern. In the first stage, children treat un- and
its base verb as an unanalyzed whole and produce un- verbs in appropriate contexts.
T his initial stage of rote control is analogous to the child saying went without realizing
that it is the past-tense form of go. According to Clark et al. (1995), children talk
about the reversal of actions long before they have acquired the productive use of un-.
T hey rely on particles such as off and back or verbs such as open to express the notion
of reversal. Although children understand the meaning of reversal at this early stage,
this understanding does not automatically lead to productive uses of un-.

T he second stage in the development of un- begins around age 3, with the first
overgeneralizations in spontaneous speech. In an elicitation task, Clark et al. found
that children’s use of un- increased steadily with age from 3 to 5, with older
children producing overgeneralizations such as *unbend, *unbury, *uncrush,
*ungrow, *unstick and *unsqueeze. T hese elicited overgeneralizations match up well
with spontaneous overgeneralizations such as *unarrange, *unbreak, *unblow,
*unbury, *unget, *unhang, *unhate, * unopen, * unpress, * unspill, * unsqueeze or *untake
(Bowerman, 1982; Clark et al., 1995). At this stage, the overgeneralized un- verbs
do not all respect Whorf’s cryptotype.
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In the third period of development, children begin to restrict overgeneraliz-
ations to forms that fit within the cryptotype, but whose adult forms do not exist,
such as *unbury, *unpress and *unsqueeze. During this same period, we also find
certain ‘overmarking’ errors. For example, the child might say *unopen and really
only means to say open, or the child might say unloosen and really only means loosen.
In such cases, the base forms open and loosen have a reversive meaning that triggers
the attachment of the prefix, even when the action of the base meaning is not
actually being reversed. Errors of this type include the forms *unopen, *untangle,
*unplug and *unloosen which are attested in corpora in the Child Language
Database Exchange System (CHILDES) (MacWhinney & Snow, 1985, 1990;
MacWhinney, 1995), as well as in elicited errors reported by Clark et al. (1995).
These overmarking errors are analogous to redundant past-tense marking in
*camed and redundant plural marking in *feets (Brown, 1973). The CHILDES
database includes other errors, most of which fit the cryptotype of un-, such as
*unblow, *unbuild, *uncatch, *uncuff, *unhand, *unlight, *unpull, *unstick and
*unzipper, that can be found in the Brown, Clark, Gleason, Kuczaj, MacWhinney
and Snow corpora. Appendix A lists examples of reversive errors in children’s
speech as reported by Bowerman (1982, 1988) and Clark et al. (1995), along with
the glosses and the context in which they were produced.

In the fourth or final stage, children begin to display adult-like control of the
reversives, and errors with these verbs decline.

1.4. Competition

The cooperative effects that support the operation of the un- cryptotype are
matched by competitive effects from other negative prefixes. The commonly used
negative prefixes in English include de-, dis-, in-, mis- and un-. Of these, the two
reversive prefixes that are in closest competition are un- and dis-. T hese designate
the reversal of the action specified by the base verb, as in untie and disconnect.
Unlike un-, the prefix dis- has received little discussion in the child language
literature. However, dis- is equally interesting and important in our view.
According to Horn (1988), dis- competed successfully against un- during the
Middle English period to take overmarking of stative verbs such as displease or
distrust (which had been unplease and untrust). As a result, the scope of un- was
narrowed to only action verbs. As a consequence of historical change, verbs that
take un- are typically Germanic in origin, whereas verbs that take dis- are typically
Romanic in origin. In Modern English, dis- and un- still compete as alternative
devices for marking reversal (Bauer, 1983; Marchand, 1969). This competition
involves a close overlap in the basic function of the prefix and a semantic overlap
between the cryptotypes involved in the verbal stems. For example, the base verbs
in disassemble, disconnect, disengage, disentangle, dismantle, dismount and disunite all
fit the cryptotypic meanings of binding, covering and attaching, which are also
involved in the cryptotype for verbs that take un-. One result of this overlap is that
many of the dis- verbs and un- verbs are synonymous: for example, disconnect vs
unlink, disentangle vs untangle, dismount vs unload, disenga ge vs uncouple or disjoin vs
unyoke. Another result of the close competition between dis- and un- is that some
verbs allow both dis- and un-, but with different meanings: for example, uncover
and discover. Finally, some dis- verbs have counterpart un- verbs in their
past-participle forms, such as disconnected vs unconnected, disconfirmed vs
unconfirmed and disarmed vs unarmed. Although the meanings of these pairs are not
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the same, they indicate the nature of competition between the two reversive
prefixes.

Despite the fact that many verbs use the prefix dis-, it appears that un- is now
far more productive for new verbs. Many of the uses of dis- in the lexicon are no
longer available analytically. In some cases, there is no positive form of the dis-
verb: for example, discuss, dispel, disturb and distort. In other cases, there is no
apparent semantic relationship between the positive verb form and the negative dis-
form: for example, dismiss, dispose, dissolve and display. In still other cases, the
meaning of dis- is simply negation, and not reversal, as in disagree, disapprove and
disallow. Furthermore, dis- is used for many abstract mental verbs that children are
unlikely to use until they are much older. T hese facts suggest that the child may
have to learn many of the dis- verbs by rote. T he generalization of dis- to novel
forms may, to some extent, be constrained by this kind of rote learning.

The limited productivity of dis- in the adult language does not necessarily
suppress the child’s early ability to generalize, especially if the child encounters
both un- and dis- in the same kind of negative context. There are cases in
Bowerman’s (personal communication, 1992) data in which children replace
disenroll with *unroll, and disarrange with *unarrange. In these cases, un- and dis-
are clearly in competition. T here is also evidence that children sometimes treat dis-
as a separate form, even though it is not separable from the base form in the adult
languages. For example, in Hall’s data (CHILDES English database), the child
says ‘it’s dising appear’, showing that she treats dis- and appear as two distinct
components. By examining the performance of dis- (together with un-)
in our network, we may be better able to understand the processes involved in the
acquisition of reversive prefixation. However, because there has as yet been no
empirical report on the acquisition of dis-, our simulation results with this prefix
are presented as generating hypotheses to be tested experimentally.

In summary, by examining these four issues in this study, we hope to provide
insights into the representation of verb semantics and the learning of English
reversive prefixes. To achieve this goal, we constructed an incremental
backpropagation network to learn the reversive un- and dis- in three different sets
of simulations.

2. Simulation 1
2.1. Method

2.1.1. Input corpus. In this study, the network was trained to map meanings of
English verbs on to the different prefixation patterns. T he input to the network was
a corpus of verbs encoded as semantic feature vectors. A total of 160 verbs were
selected from two sources: Webster's New Collegiate Dictionary and the corpus of
Kucera and Francis (1967; henceforce K&F). Our data set consisted of 49 un-
verbs, 19 dis- verbs and 92 ‘zero verbs’, which take neither un- nor dis- (see
Appendix B for a complete list of the verbs). Webster’s contains other verbs
prefixed with un- or dis-, but many of these—such as wunwish, unlive and
disannul—are unacceptable or unfamiliar to modern-day English speakers. T he
final selection of the 49 un- verbs and 19 dis- verbs was based on native-speakers’
judgements of the acceptability of all the non-archaic un- and dis- verbs that
appeared in Webster’s. In the case of un-, 14 subjects were asked to rate how good
each verb sounded to them on a scale of 1 to 7 (from ‘completely weird” to
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‘perfectly natural’) and only those with an average rating of 5.0 or above were
selected. The 19 dis- verbs also excluded rarer, highly abstract items, such as
disentail, disfranchise and disinherit; forms that are not clearly primarily verbal, such
as disadvantage; and forms with no true base, such as dispel, distort or disturb.
Finally, we randomly selected 92 zero verbs from Webster’s that can be prefixed
with neither dis- nor un-. Half of these were high-frequency verbs (above 100) in
the K&F counts and half were low-frequency verbs (below 100). The relatively
higher proportion of zero verbs as compared with un- and dis- verbs is intended to
represent the distribution of these forms in the input to children.

Each of the 160 verbs was encoded as a set of semantic features with
continuous values. Because there has been no systematic account of the un- and
dis- verbs with respect to their semantic composition, the final selection of the 20
semantic features was based partly on the limited literature available on this topic
(Whorf, 1956; Marchand, 1969; Levin, 1993), and partly on our own linguistic
analysis (see Appendix C for a complete list of the features). T hese features include
some general characteristics of actions (features 1-6; see Appendix C),
relationships between entities (features 7-15) and joint properties of entities
(features 16-20). T hey are designed to capture the semantic range of the verbs that
can be prefixed with un- and dis-, as well as verbs that undergo no prefixation.
T hese features, when combined in a distributed representation, provide a semantic
basis for distinguishing verbs that can take the reversive prefixes from those verbs
that cannot. Our feature coding focused on an attempt to capture basic linguistic
and functional properties. It is possible that a more elaborate feature coding
process could further emphasize the distinctions between individual verbs in a way
that could facilitate aspects of learning and generalization (Plaut et al., 1996;
Plunkett & Marchman, 1991).

T he assignment of particular features to particular verbs was based on empirical
data. We presented 15 native speakers of English with the 160 verbs and the 20
semantic features, and asked them to evaluate each verb with respect to each
feature, to determine whether or not the particular feature applies to that particular
verb. Subjects rated the feature as being relevant to the verb if they thought that
the feature was characteristic of, or typically involved in, the situation denoted by
the verb. T herefore, for each subject, we had a feature-by-verb matrix of 0s and 1s
(0 means that the feature is irrelevant to the verb, and 1 means that the feature is
relevant). In this way, the averaged rating scores from the 15 subjects were the
graded patterns used as input to the network. In this case, each verb was encoded
as a vector of the 20 features, with values between 0 and 1. Although there were
varying degrees of similarity among verbs represented in this way, the
representation of a given verb was distinct from that of any other verb. In other
words, no two verbs shared exactly the same values for all the 20 features. Some
examples are given in Appendix C, along with the features.

T o evaluate the validity of the results from our semantic judgement experiment,
we conducted a hierarchical cluster analysis on the verbs encoded as feature
vectors. The results show that synonymous words tended to group together as
clusters, indicating that subjects were consistent in their coding of verbal features.

2.1.2. Network architecture. Our simulations used a standard three-layer
backpropagation network (Rumelhart et al.,, 1986). There were 20 input units
encoding the verbal semantic features, six hidden units, and three output units
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Table I. Vocabulary structure across prefixation
patterns in Simulation 1

T otal dis- un- Zero
20 2 8 10
40 6 18 16
60 9 23 28
80 11 30 39
100 12 37 51
120 15 43 62
140 19 49 72

Note: The 20 zero verbs in the initial training are not included here.

representing un-, dis- or zero prefixation. All simulations reported in this study used
this same basic architecture. T he learning rate and momentum were held constant
across all simulation trials. The simulations were conducted using the TLEARN
program configured at the Center for Research in Language, University of
California at San Diego.

2.1.3. Task and procedure. The task for the network was to learn to classify the
verbs into three categories: those that can be prefixed with un-; those that can be
prefixed with dis-; and those that cannot be prefixed with either.

We applied an incremental learning schedule to reflect more realistically the
realities of lexical acquisition (Elman, 1993; MacWhinney & Leinbach, 1991;
Plunkett & Marchman, 1993). Children typically build up their vocabulary in an
incremental fashion, rather than learning all words at once. In the incremental
schedule used here, lexical items entered the training corpus one by one, although
with different rates at different learning stages. Before the network learned 60
verbs, the rate of vocabulary growth was one verb every five epochs of training.
Between 60 and 100 verbs, the rate increased to one verb every three epochs of
training. After 100 verbs, the rate was one verb every one epoch of training. T his
increasing rate was intended to reflect the accelerating function in children’s
vocabulary growth (Plunkett & Marchman, 1993). T able I presents the vocabulary
increase process after the initial training in Simulation 1.

Prior to incremental training, the network was trained on 20 high-frequency
zero verbs. T his was carried out to reflect the fact that, before children learn
negative prefixes, they have already learned some verbs that undergo no
prefixation. After this initial training, the remaining verbs entered the training
corpus one by one. The order in which they entered training was determined by a
weighted random selection process. The weighting was based on the type
frequency (un-, dis- and zero) and the token frequency of the verbs. The token
frequencies of the zero verbs were rank ordered on a scale of 1 to 5, according to
the K&F norms. A verb was assigned a rank of 1 if its K&F frequency count was
20 or below, and a rank of 5 if the count was above 500; ranks of 2-4 had K&F
counts of 21-50, 51-200 and 201-500 respectively. T he token frequencies of the
un- and dis- verbs were randomly rank ordered, since most of these verbs were of
low frequency in the K&F counts (simply because K&F counts were based on
written data). When fed into the network for training, a verb was repeated a given
number of times, according to its frequency rank as calculated above.
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2.1.4. Data analysis. We analyzed the network’s performance by examining the
activation of the three output units (un-, dis- or zero). T he root mean squared error
(rms) score was used to determine the match between the network’s output pattern
and the predefined target pattern. If the rms fell below 0.25, then the output was
deemed to be adequate as the correct target. T his criterion is roughly equivalent
to the activation of the target unit at or above 0.8, with the sum of the activations
of the incorrect units not exceeding 0.2. All other patterns were considered to be
incorrect.

The network’s performance was also assessed at regular intervals with
hierarchical clustering analysis (see Elman (1990) for application of this method in
network analysis). This technique allows us to discover the relative semantic
distances between different verbs that the network represents at the hidden-unit
layer, across various time points during learning. Earlier, we used this method to
study the semantic judgement results. In what follows, we will use this method to
analyze the hidden-unit activation patterns, to determine if the network has
developed meaningful and structured representations about the input-output
relationships.

2.2. Results and Discussion

Figure 1 presents the percentages of the verbs that have been learned correctly after
the initial training, across the vocabulary expansion process. T he graph is broken
down into three parts (Figures 1(a)—(c)) by the different prefixation types (i.e. un-,
dis- and zero). One can immediately observe that the network quite ably learned
both the un- and the zero verbs but failed to learn the dis- verbs. Although the
performance with the un- and the zero verbs far exceeded that of the dis- verbs, the
network still failed to learn some of the un- and zero verbs, even when all words
entered training at the end (24% errors for un- and 26% for zero). This failure
reflected the network’s inability to recover from overgeneralization errors—a point
to which we will return shortly.

The network acquired a distinct mapping for the un- verbs, by identifying
covert semantic categories (i.e. cryptotypes) inherent in these verbs. T he cluster
analysis of the hidden units given in Figure 2 reveals that, by the 50-word level,
the network had formed a structured internal representation. It should be noted
that the capitalized marker after each verb in the figure is a mnemonic for the
prefixation pattern of each verb; the actual input consists of the base verbs without
any prefixes. In Figure 2, verbs that are closely related in meaning are grouped
lower in the tree,”> while clusters of verbs that are similar to other clusters are
connected higher in the tree. In addition, we can observe two general clusters in
this tree: one cluster for the un- verbs, and the other cluster for the zero verbs. If
the network had not developed meaningful structures, then we would not expect
to find meaningful clusters in the tree.

In Figure 2, most of the verbs in the un- cluster share the cryptotypic meaning
of binding or locking: for example, bind, chain, fasten, hitch, hook and latch. T he
network’s representation of this meaning was so strong that synonymous verbs in
the other categories were also included in the un- cluster (such as hold and mount);
hence, overgeneralizations of un- on these verbs. Clearly, these synonymous verbs
were included because of their semantic similarity with the cryptotype. Because
vocabulary growth was incremental, not all cryptotypic meanings were identified at
the same time. Instead, mini-cryptotypes emerged at different times, depending on
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Figure 1. Per cent correct of prefixation as a function of vocabulary increase for
(a) un- verbs, (b) dis- verbs and (c) zero verbs in Simulation 1.
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put ZERO ———

arrange DIS :’____]
connect DIS

lace UN
chain UN
latch UN
braid UN
wind UN
hold ZERO
hook UN
mount DIS
ravel UN
coil UN

cork UN
fasten UN
plug UN —
hich UN —— '

roll UN

make ZERO
turn ZERO :l_)_'
stop ZERO
take ZERQ ——}_l
come ZERQ ——— K . , .

getZERO —— I

call ZERO
believe ZERO

wait ZERQ
help ZERO

keep ZERO —
use ZERO
look ZERO :’J—J
show ZERO

tike ZERO
start ZERO
walk ZERO
run ZERO
say ZERO
see ZERO
talk ZERO
hear ZERO
work ZERO —
give ZERO
ask ZERQ
tell ZERO
learn ZERO
go ZERO
reach ZERO
charge DIS
allow ZERO

Figure 2. Hierarchical cluster tree of the network’s representation of the semantic
structure of verbs at the 50-word boundary in Simulation 1.

what words the network had learned at a given time. Figure 2 shows, for example,
that the network had not yet developed a clear representation for the ““enclosing”
verbs that involve circular movements. The verbs ravel and coil were correctly
categorized into the un- cluster, but the verb roll was incorrectly treated as a zero
verb.

T he network received no discrete label of the semantic category associated with
un-, and there was no single categorical feature telling which verb should take
which prefix. All the network received was semantic featural information
distributed over different input patterns. Over time, however, the network was able
to develop a structured representation for the mini-cryptotypes in the input-output
mapping process. The structured representations in the network emerged as a
function of its learning of the association between form and meaning, and not as
a property that was given to the network by the modeller. An important implication
of this result is that children, in learning to use the reversive prefix un-, also abstract
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the semantic regularities in the un- verbs through combinatory restrictions that the
prefix places on these verbs (see Bowerman, 1982, 1983). The children are not
learning a rule in this case, because the rule itself is not clear; in Whorf’s words,
the rule is ‘subtle’ and ‘intangible’.

In contrast to the case with un-, the network developed no clear representation
for the dis- verbs. T hree of the four dis- verbs trained during the first 50 words were
clustered with the un- verbs, and one with the zero verbs. T he reasons for the
network’s inability to learn the dis- verbs are as follows:

(1) The network had seen only a few dis- verbs up to this point.

(2) The dis- verbs entered the learning process only sporadically (as a result of
weighted random selection).

(3) Thedis- verbs do not have a semantic structure as unified as that of the un- verbs.

How does a structured representation of the un- cryptotype influence the network’s
learning of reversive prefixes? Empirical research in child language indicates that
there are two possible roles for the cryptotype. T he first function of the cryptotype
is to overcome overgeneralizations made at an earlier stage, if these over-
generalizations involve verbs that fall outside the cryptotype, such as *uncome,
*unhate and *untake (Bowerman, 1982). The second function of the cryptotype is
to induce new errors. This occurs because, once children have identified the
cryptotype, they will overgeneralize un- to all verbs that fit the cryptotype,
irrespective of whether or not the adult form actually allows un- prefixation.

Our simulation results provide particular support for the second role of a
cryptotype in leading to overgeneralizations. T here were no simulated errors that
constituted flagrant violations of the un- cryptotype, such as the forms *uncome or
*unhate reported by Bowerman (1982). All overgeneralized verbs remained within
the scope of the cryptotype. Overgeneralizations occurred after the network had
developed some structured cryptotypic representation, including (in order of
occurrence): *unhold, * unpress, *unfill, * unca pture, * unsqueeze, * unfreeze, * untighten,
*untack, *unbury, *unplant, * unpeel and *ungrip. T hese results matched up very well
with available empirical data. For example, errors such as *unbury, *uncapture,
*unpeel, *unpress, *unsqueeze and *untighten all appeared in Bowerman’s (1982)
data. Other simulated errors, such as *unsplit, *unmelt, * unloosen and * unstrip reflect
typical cases of children’s overmarking of un- with verbs whose base form already
indicates the reversal of the cryptotypic meaning, such as *unopen, *unsplit or
*unapart (see Bowerman, 1982; Clark et al., 1995).

One of the two children discussed in Bowerman (1982) displayed the same
patterns as those simulated in the network. T he overgeneralizations that the child
produced all fell into the cryptotype, and her acquisition of un- as a reversive prefix
is closely associated with her discovery of the cryptotypic meanings of the un-
verbs. In Clark ef al.’s (1995) naturalistic data, the child’s innovative uses of un-
also respected the cryptotype from the beginning. Clark et al. noted that the child’s
use of un- matched the semantic characteristics of the cryptotype, even when the
conventional meanings of the verb in the adult language did not: *unbuild was used
to describe the action of detaching lego-blocks; *undisappear was used to describe
the releasing of the child’s thumbs from inside his fists. T he child seemed to have
recognized that un- marks the reversal of actions and that it can do so only for
certain kinds of action (i.e. actions that fit the cryptotypic characteristics of
binding, covering, enclosing and attaching).

Another child in Bowerman’s (1982) data displayed a different pattern. She
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started to use un- productively before she recognized the cryptotype associated with
the un- verbs. Only later on did she restrict the use of un- to verbs that fit the
cryptotype, in which case the cryptotype helped her to recover from earlier errors.
However, a detailed examination of the child’s early errors revealed that she used
un- in those cases to mean ‘stop doing something’, rather than the reversal of an
action, such as in *uncome and *unhate. T his ‘stop doing X’ meaning of un- could
be a precursor of the reversive meaning of un-, and it is likely that the child came
to recognize the reversive meaning of un- simultaneously as she recognized the
cryptotypic meanings of the verbs. As Clark ef al. (1995) pointed out, children can
express the notion of reversal long before they have acquired the prefix un-, relying
on negative particles (such as off and back) or general-purpose verbs (such as open
or undo). Therefore, it is natural that, when learning to use un-, they pay attention
to the cryptotypic constraints that un- places on the verb in terms of telicity,
accomplishment and other features. This explanation is compatible with Clark’s
(1987) ‘principle of contrast’” or MacWhinney’s (1989) ‘principle of competition’,
which states that children tend to assign different functions to distinct forms.

T he role of the cryptotype in inducing overgeneralizations can also be observed
with the dis- verbs. Earlier, we observed that the network cannot learn the dis- verbs, as
a result of the absence of a distinct cryptotype for these verbs, as well as the way in
which they entered training. Interestingly, the network overgeneralized un- to a number
of dis- verbs that shared the cryptotypic meaning of un-, producing errors such as
*unassemble, *unentangle, * unmount and *ununite, all of which, in the adult language,
should be prefixed with dis- instead of un-. T hese dis- verbs all entered the learning
process when the network had already constructed a clear representation of the un-
cryptotype. Although overgeneralizations on dis- verbs are rare in children’s speech,
the results show that, once the system starts to overgeneralize on the basis of the
cryptotype, it does so to all the verbs that share the semantic characteristics of the
cryptotype.

T o summarize, this simulation has shown that the network exhibits learning
patterns that closely resemble those of a human child. T he model learns to extract
the shared aspects of the semantic properties associated with wun-; builds a
structured representation of the semantic cryptotype; and uses this representation
as a basis for productive and innovative use of the negative prefixes. Over-
generalization of un- is simply a result of such productive and innovative uses. T he
results also indicate that our network can use a distributed input to extract an
internalized structured representation that expresses the ‘subtle’ or ‘intangible’
aspects of cryptotypes.

Simulation 1 suffered from two major mismatches to the empirical data and the
network performance could not improve after even prolonged continuous training
(an additional 500 epochs). First, the network was unable to learn the dis- verbs.
However, children are able to learn these verbs. Second, the network was unable
to recover from overgeneralizations that involved verbs that fall within the range of
the semantic cryptotype (see Figure 1(c)). However, children are eventually able
to restrict these overgeneralizations. In both cases, children can probably rely on
verb-by-verb learning of the type discussed in MacWhinney (1996a,b) to rein in
their overgeneralizations and to pick up individual verbs with dis-.

T here are several possible reasons why our network did not show this type of
learning ability. First, it is possible that the feature coding system that we have used
in this particular simulation provides few resources for this type of verb-by-verb
restriction. A richer coding may facilitate a greater separation between individual
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verbs. Second, it is possible that the absence of a phonological code made it
difficult for the network to treat individual verbs differently. T hird, it is possible
that the difficulties that the network experienced in learning dis- verbs were due to
the shape of the input training corpus. In the next simulation, we explore this final
possibility. We discuss the first two possibilities later.

3. Simulation 2

T o examine one possible cause of the difficulties that the network had in learning
to use dis-, we modified the procedure by which input data entered the learning
process. Simulation 2 was based on this new input procedure.

3.1. Method

The input data, the network architecture and the data analysis methods used in
this simulation were identical to those in Simulation 1. T he task and procedures
were modified in the following ways.

First, we hypothesized that the intermittent nature of the training of dis- verbs
in Simulation 1 (as a result of weighted random selection) made it impossible for
the network to extract a semantic representation for this group of verbs. In this
second simulation, we introduced the dis- verbs into training in a more focused
manner, such that all dis- verbs were exposed to the network within the first 35%
(i.e. 56 words) of the data set. T his training schedule was intended to reflect the
fact that children typically learn dis- and un- verbs separately (most dis- verbs
actually occur later than un- verbs in children’s speech, as in the CHILDES
database, for example). T he other types of verb entered training as in Simulation
1. Although this training schedule is less realistic than that used in Simulation 1,
it allows us to assess the effects of focused training on the competition between the
two ways of marking reversives.

Second, we wanted to see if the network could learn to use un-
without immediately organizing its cryptotype. In the first simulation, the network
identified the cryptotype for un- quite early and easily. We hypothesize that, if the
network had more difficulty in forming cryptotypes, then perhaps it would initially
overgeneralize un- outside the cryptotype, as was done by at least one of the
children studied by Bowerman (1982). Identification of the un- cryptotype was
made more difficult by introducing at the beginning a few un- verbs that do not
clearly belong to the cryptotype (such as undo, undelete or unscramble); introducing
at the beginning several dis- verbs that share the meaning of the cryptotype (such
as disassemble, disentangle or dismount); and introducing all three types of verbs into
training from the beginnning, without the initial training of zero verbs only. T able
IT presents the vocabulary increase process in Simulation 2.

3.2. Results and Discussion

Figure 3 presents the percentages of the verbs that have been learned correctly as
a function of vocabulary increase, broken down by the different prefixation types
(i.e. un-, dis- and zero). T hree major results emerged from these data. First, unlike
in Simulation 1, most of the dis- verbs (79%) were learned correctly by the
60-vocabulary-item mark, after which point learning tended to level off. Second,
unlike in Simulation 1, a large number of zero verbs and un- verbs were mapped
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Table II. Vocabulary structure across prefixation
patterns in Simulation 2

T otal dis- un- Zero
20 6 8 6
40 13 14 13
60 19 21 20
80 19 32 29
100 19 42 39
120 19 49 52
140 19 49 72
160 19 49 92

incorrectly, even after all the words had entered training. T hird, as in Simulation
1, the network could not recover from overgeneralizations of un- once it committed
these errors.

Earlier, we identified several possible sources of the network’s failure in learning
the dis- verbs. These included the interspersed training procedure and the lack of
semantic coherence of the dis- verbs. T he results from this simulation showed that,
if the dis- verbs entered training early on in a more focused manner, then the
network was indeed able to learn these words.

In Simulation 1, the network overgeneralized un- to dis- verbs, based on their
match to the cryptotype: for example, *unassemble, *unentangle, *unmount and
*ununite. In Simulation 2, the network did not make such overgeneralizations,
because these verbs had entered training at an early stage, before the system had
developed a representation of the cryptotype for un-. T o see how this works, let us
consider that, in Simulation 1, assemble entered training as one of the last items in
the vocabulary expansion process, when the network had already developed a firm
representation of the cryptotype. In contrast, in Simulation 2, assemble was learned
as a dis- verb shortly after it entered training as the third item, before any
representation for the cryptotype could be formed; hence, no chance for
overgeneralization of un-. The same account applies to verbs such as entangle,
mount and unite. These results once again indicated the role of the cryptotype in
the network’s ability to overgeneralize.

A second major finding from Simulation 2 is that the revised training procedure led
to problems in learning many zero and un- verbs. In Simulation 1, the network
correctly learned 74% of the zero verbs and 76 % of the un- verbs. In Simulation 2, it
learned only 25% of the zero verbs and 51% of the un- verbs. Most of the errors
involved mapping into incorrect categories; a smaller number involved low activations
on all three output units.

T wo major forces contributed to the network’s poor performance on the zero
verbs. First, as in Simulation 1, the majority of the errors still resulted from the
network’s overgeneralizations of un- verbs based on the cryptotype. Thus,
simulated errors included *unbury, *unclose, *unfill, *unfreeze, *unhang, *unhold,
*unloosen, *unmake, *unmelt, *unopen, *unpat, *unpeel, *unplant, *unpress,
*unsqueeze, *unstrip, *untack and *untighten, which all fit the un- cryptotype, as in
Simulation 1. Second, because there was no initial training in Simulation 2, the
zero verbs entered training simultaneously with the dis- and the un- verbs, so were
competing directly with them for distinct mapping from the outset. T he focused
training on the dis- verbs was actually disadvantageous to the zero verbs. As a
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Figure 3. Per cent correct of prefixation as a function of vocabulary increase for
(a) un- verbs, (b) dis- verbs and (c) zero verbs in Simulation 2.
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result, 13% of the errors with the zero verbs were overgeneralizations of dis-,
including the errors *dislearn, * disinvite, *display, *distalk and * diswrite, all of which
involve mental or cognitive activities. T his pattern of overgeneralization indicates
that the network tended to pick up a cryptotype for the dis- verbs that involved
features for mental or cognitive activities. Such learning is a reasonable
generalization from exposure to verbs such as disaffiliate, disengage, disentangle,
disintegrate, disprove, distrust and disunite.

T he change of the input also led to more overgeneralizations of dis- to un- verbs.
Of the 49% errors with un-, 39% resulted from overgeneralizations of dis- or the
inappropriate high activation of the dis- output unit. T he network produced errors
such as *disbraid, *dischain, *disclench, *discoil, *dislace, *disleash, *disscrew and
*dissnap, all of which should be prefixed with un- in the adult language. T hese
results suggest that the network first extracted the cryptotypic meanings of
attaching, enclosing and binding from the dis- words (such as disassemble,
disconnect, disengage, disentangle, dismantle and disunite), which it then used as a
basis for overgeneralization to the un- verbs. This is the opposite of what we
observed in Simulation 1, where the network overgeneralized un- to dis- verbs on
the basis of semantic abstraction.

In this simulation, we modified the initial input sequences to make it more
difficult for the network to discover the un- cryptotype. We hypothesized that, if
the initial input is less favourable for the extraction of the un- cryptotype, then the
network might overgeneralize un- before it could develop a committed semantic
representation of the cryptotype. T his did not happen, however. T he initial input
differences to the network did not affect its performance across Simulations 1 and
2. The results indicate that changes in the structure of the input delayed both the
extraction of a cryptotype and overgeneralization, so providing support to the
direct link between the growth of the strength of the prefix and the abstraction of
its underlying conceptual structure, as found in Simulation 1.

Finally, as in Simulation 1, the network did not recover from overgeneralization
errors with un-, and continued to produce high error rates for zero verbs, even at
the end. Even after prolonged continuous training (an additional 500 epochs), the
network did not converge on the correct mapping patterns. T he network seemed
to have discovered the relationship between the semantic properties of the verbs
and their prefixation pattern (such as the cryptotype and un-), and settled on a firm
mapping structure, by the time it started to overgeneralize.

T o summarize, in Simulation 2, we have shown that the network can learn the dis-
verbs, provided that these verbs are presented in sufficient quantity early in training.
Early presentation of this less-productive prefix allows it to compete more effectively
with the other reversive marking options. T he cost of this early presentation is that the
network overgeneralizes dis- to many zero and un- verbs. In agreement with
Simulation 1, the results provide evidence for the role of the cryptotype in the
acquisition of reversive prefixes. A comparison of Simulations 1 and 2 shows that
overgeneralization depends on whether or not the network has developed a semantic
representation of the cryptotype. For example, when the dis- verbs enter training after
the development of a cryptotypic representation, the network overgeneralizes (for
example, *unassemble and * unmount), as in Simulation 1; if they enter training before
the cryptotype is recognized, then no overgeneralization occurs, as in Simulation 2.
However, in Simulation 2, the network was still unable to recover from errors, once it
overgeneralizes according to the cryptotype. T herefore, we deal further with the
recovery problem in the next simulation.
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Table III. Vocabulary structure across
prefixation patterns in Simulation 3

T otal Zero un-
20 11 9
40 21 19
60 32 28
80 42 38

100 49 51

120 49 71

141 49 92

4. Simulation 3

In the first two simulations, the network was wunable to recover from
overgeneralizations, despite repeated training. In this simulation, to study the
effects of learning and recovery more directly, we removed the dis- verbs from
training and exposed the network only to the un- and the zero verbs.

4.1. Method

The input data, the network architecture, the task and procedure, and the data
analysis methods in Simulation 3 were the same as in Simulation 2. The only
difference was that the dis- verbs were removed from training in this simulation.
T able III presents the vocabulary increase process in Simulation 3.

4.2. Results and Discussion

Figures 4(a) and (b) present the percentages of the verbs that have been learned
correctly for the un- and the zero verbs, respectively. Comparing these data with
those from Simulation 2, we can see that the error rates for the zero verbs and for
the un- verbs were significantly reduced. However, as in Simulations 1 and 2, the
network continued to overgeneralize un- to zero verbs, based on the semantic
cryptotype.

In this simulation, we found that the network could recover from
overgeneralizations with a number of words, including *unbend, * unbury, *unhang
and *unsqueeze, all of which appeared in Bowerman (1982). After the initial errors,
these verbs began to resist un- prefixation as training continued. Incidentally, all
the words that showed recovery were those that had entered the learning process
at a very early stage. Apparently, the additional experience involved early on in
coding the semantics of these verbs in distinction with other verbs gave them a
greater distinctiveness in the network, which served to facilitate resistance to
overgeneralization. A cluster analysis of the network’s representation at the hidden
layer revealed that, fairly early in training, the network had identified a structure
of the un- cryptotype. Figure 5 presents the cluster tree of the network’s
representation at the 24-word boundary (bury entered learning as the 13th word,
bend as the 15th word, hang as the 20th word and squeeze as the 24th word). As in
Figure 2, the capitalized marker after each verb in Figure 5 is a mnemonic for the
prefixation pattern of each verb; the actual input consists of the base verbs without
any prefixes.
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Figure 4. Per cent of prefixation as a function of vocabulary increase for (a) un-
verbs and (b) zero verbs in Simulation 3.

As shown in Figure 5, the network developed separate representations for the
un- and zero verbs at this point, although some zero verbs were miscategorized into
the un- category (the overgeneralized forms). However, two factors make the
representation incomplete and unstable. First, the category members in the zero
clusters did not form clear semantic coherence; for example, see and turn were
grouped together, but come and go were not. Second, although some verbs in the
un- cluster were associated with the ‘attaching’” meaning (such as link, tangle and
plug), others were not (such as scramble, settle and do). Compared with the
representation in Figure 2, the network’s representation of the un- cryptotype is
only partial at this point. As a result, the overgeneralizations with zero verbs were
based on the network’s partial rather than stable and clear structure of the
cryptotype (unlike the situation in Simulation 1, as revealed in Figure 2). Given
such a structure, the network had a chance to recover from the overgeneralization
errors. In contrast, in the previous simulations, the network did not show any signs
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Figure 5. Hierarchical cluster tree of the network’s representation of the semantic

structure of verbs at the 24-word boundary in Simulation 3.

of recovery, probably because it had settled on a stable structure by the time it
started to overgeneralize.

In this simulation, there were also many words that could not recover from
overgeneralizations, including *unclose, *undetach, *unfill, *unpress, *unstrip and
*untighten, all of which fit the cryptotype. Interestingly, these words were learned at
a later stage, when the network already settled on a firm semantic structure for the
cryptotype, as revealed by analyses of the network’s hidden-unit activation patterns.

The discrepancy between errors that permit recovery and those that do not
provides some evidence on the time course of the network’s learning ability. Early
in learning, the network has not built a complete or stable representation for the
semantic cryptotype associated with un-. Overgeneralization errors at this stage
have a chance to be corrected, because the network is still flexible or ‘plastic’
enough to adjust its error space in large sweeps. Later on, as the network learns
more words, and as it settles on some stable semantic representations on which
overgeneralizations are based, the network becomes increasingly inflexible and
unable to make radical adjustments in the weight space. In other words, the
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network becomes entrenched in a state of weight configurations that makes further
changes impossible (see ElIman (1993, pp. 91-93) for a detailed discussion of how
the learning algorithm determines weight adjustment over time). T hus, ‘plasticity’
is a property characteristic of early stages of learning, as in young children, while
‘stability” is characteristic of later stages of learning.

T o verify our analysis of the early versus late differences in the network’s ability
to recover, we retrained the same network with the following changes in training
schedule. We exchanged the verbs that could recover from errors with the verbs
that could not, in the order in which they entered the training process. Specifically,
the verbs bend, bury, hang and squeeze that occurred early in the original training
were moved to a later stage of learning in the new training, whereas verbs such as
close, detach, fill, press, strip and tighten were now moved to the early stage. The
result from this new round of training is informative. All the verbs that could not
recover in the original training could now recover from the overgeneralizations after
their initial errors. However, the verbs that recovered from overgeneralizations in
the original training could no longer recover in this new training, because the
overgeneralization errors were now based on a stable structure of the semantic
cryptotype that the network built at the later stage of learning.

T o summarize, the data from Simulation 3 provide converging evidence on the
role of semantic cryptotypes in overgeneralization and recovery during the network’s
acquisition of the un- reversive prefix. T he results are consistent with analyses of
patterns of network learning in the domains of syntactic structures (Elman, 1993)
and past-tense acquisition (Marchman, 1993). Those analyses, together with our
results, paint a general picture of the early plasticity and late stability both in
network’s and in children’s learning. Our results provide further evidence on the role
of plasticity and stability in overgeneralization and recovery in language acquisition.

5. General Discussion

This study was designed to evaluate the detailed semantic basis for the
overgeneralization and recovery processes in language acquisition. We wanted to
relate these processes to semantic support within cryptotypes and competition
between alternative devices. At the same time, we wanted to demonstrate ways in
which connectionist models can benefit from a more complete semantic grounding.
T o achieve these goals, we built a network to map semantic input features to three
prefixation patterns in an incremental learning schedule. We conducted three sets
of simulations to examine the role of the semantic cryptotype associated with the
use of reversive prefixes.

In Simulation 1, the network constructs a representation of a cryptotype for
verbs that take un-, and it then uses this representation as a basis for productive
and innovative use of the reversive prefixes. In Simulation 2, the network develops
structured representations of the semantic cryptotype that underlies both un- and
dis-. Results from these two simulations suggest that the role of the cryptotype is
to induce overgeneralizations to verbs that fall within the realm of the cryptotype,
rather than being to reduce overgeneralizations outside the cryptotype. Simulation
2 also highlights the role of lexical competition in morphological acquisition. It
shows that direct competition between similar inputs (such as verbs that share the
semantic cryptotype) leads to learning difficulties for dissimilar output (i.e. dis-
versus un-). In Simulation 3, the network exhibits a higher level of early plasticity
that promotes recovery from overgeneralization errors. T ogether, these results give
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us a picture of the learning dynamics of a network system that extracts semantic
information, develops cryptotypic semantic representations, overgeneralizes
competing morphological devices and eventually recovers from errors (see also Li,
1993). T hese results help us to understand how and why learners overgeneralize
and recover from overgeneralizations.

Our analyses also provide a more precise account of how Whorf’s cryptotype
emerges from distributed representations, and how it affects overgeneralization and
recovery. Whorf described the meaning of the cryptotype as ‘subtle’ and
‘intangible’, but he also noted that native speakers control it intuitively. Whorf did
not explain how this could be true. In our view, the reason for the intangibility of the
cryptotype is that the semantic features that unite different members of a cryptotype
are represented in a complex distributed fashion (such as features overlap across
categories), such that they are not easily subject to explicit symbolic analysis, but are
accessible to native intuition. T herefore, the meaning of the cryptotypic members
itself is not intangible, but the semantic relationships between the members are
intangible, because they are inaccessible to symbolic analysis. Gender and classifier
systems are further illustrations of the intangibility of such distributed patterns
(Lakoff, 1987; MacWhinney, 1989; Kopcke & Zubin, 1984).

T he meaning of a cryptotype constitutes a complex semantic network in which
verbs differ from one another with respect to the following: how many features each
verb contains; how strongly each feature is represented in the verb; and how
strongly features within verbs are related to one another (all true with the input to
our network). It is the relationships between the features that give rise to
cryptotypes. For the child, learning reversive prefixes is not the learning of a
symbolic rule for the use of a prefix with a class of verbs, but the learning of the
connection strengths that hold between a particular prefix and a complex
distributed set of semantic features across verbs. The learning system groups
together those verbs that share the largest number of features and take the same
prefixation patterns. Over time, the verbs gradually form clustered structures, with
respect to both meanings and prefixation patterns.

Results from the present study also shed light on the role of the plasticity and
stability of network learning in the network’s ability to recover from
overgeneralizations. If the network develops a firm structure of the cryptotype by
the time it overgeneralizes, then it has little chance to recover from the errors.
However, if the overgeneralizations are only based on partial or unstable structures
that are present during a period when the weight space is not fully committed, then
recovery is possible.

We should mention at least three factors that may have led to an
underestimation of recovery capacities in our simulations.

(1) Our model has included only semantic representations of verbs. A model that
also codes for phonological differences between verbs would probably aid the
system’s recovery from overgeneralizations (such as the use of phonological
distinctive features in MacWhinney and Leinbach (1991)).

(2) It is possible that a richer, more distinctive semantic coding for our verbs
would further aid in helping individual verbs resist overgeneralization and
recover from overgeneralization errors.

(3) There is good reason to believe (MacWhinney, 1996b) that older language
learners have access to a variety of secondary rehearsal and organizational but
not our network systems that they can use to retune lower-level connections.
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Each of these additional forces can be explored in further connectionist models
and we have already begun to follow up each of these issues in work currently in
progress (Li & MacWhinney, 1996). Eventually, consideration of these additional
factors—and possibly others—will allow us to understand better the detailed
mechanism of the processes of overgeneralization, recovery and competition across
a wider variety of semantic fields.
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Notes

1. The verbal prefix un- should be carefully distinguished from un- with adjectives such as unsure: the
former indicates reversal of action, while the latter roughly means ‘not” and can attach to almost all
adjectives that denote quality or state.

2. There were a few exceptions to this description. For example, wind was grouped with hold, hook and
mount, and go was grouped with reach, charge and allow (rather than walk and run). T hese exceptions
could result from the incompleteness or instability of the semantic structure that the network
develops at an early stage (see more discussion on the instability issue later).
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Appendix A: Overgeneralization Errors of un- Produced by Children

(1)
(2)
(3)

(4)

(5)
(6)

(7)

(8)
%)

(10)
(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

D, 2;8

D, 2;9

D, 2;9

D, 2;10

D, 3;4

D, 3;5
D, 3;10

D, 4;3

D, 4;3

D, 4;5

D, 4;6

C, 3,9

C, 4,5

C, 4,7

C, 51

C, 51

C, 51

C, 6,0

M:
D:
D:

DU UE

v

oy

<

E0E00

N 0N

Did someone undo my belt? [after D pulled her belt undone]
No, no, I unpulled it because it wasn’t tied yet.

It’s unflowing. [= emptying; opening plug in bidet and letting
water out]

No, no I was tighting my badge. I tighted my badge, and you
should untight it. [= loosen; D wanted to take a PanAm
badge off his shirt]

T hey’'ve disappeared. [having hidden his thumbs by closing
his fists on them]

Can you make them appear again?

I can’t make it undisappear. [= reappear]

Oh your hair is unpinning. [as a hairpin fell out of M’s hair]
First I unbuild it, okay? [needing to put his blocks in a bag to
take upstairs]

I don’t know what’s in my stocking. I'll have to unhang it.
[= take down; feeling his Christmas stocking]

Show me how you uncatch your necklace. [= undo the catch]
I'm unpyjama-ing. [= taking off; having put pyjamas over his
clothes, and now proceeding to take them off]

Here’s Duncan’s airplane. D’you want me to unblow it?

[= deflate]

... he unstrings the worms every day and throws them on the
fire. [= taking off the string; telling a story]

Maybe it’s for unlighting the flame . . . a faster way.

[= extinguishing; speculating about a small knob on the
stove]

... but the two big kids didn’t know that the little one was
unknitting the wool. [= undoing the knitting]

T his is pooey that’s coming out of here. [in tub, showing cup
with water spouting out of the holes] And that’s how to make
it uncome. [blocking holes with hand]

I've been using them for straightening the wire. [C has asked
M why pliers are on the table]

And unstraighting it? [= unbending]

I hate you! And I'll never unhate you or nothing!

You’ll never unhate me?

I'll never like you.

Seems like one of these has been shortened, somehow. [M
working on strap of C’s backpack]

T hen unshorten it. [= lengthen]

He tippitoed to the graveyard and unburied her. [telling ghost
story]

I unbended this with stepping on it. [= straightened; after
stepping on a tiny plastic three-dimensional triangular
roadsign, squashing the angles out of it]

Wait until that unfuzzes. [watching freshly poured, foamy
coca cola]
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(21)

(22)
(23)

(24)
(25)

(26)

(27)

(28)

(29)

(30)

(31)
(32)

(33)

C, 6,11

C, 7;11
C, 4;9

E, 4,7
E, 4;11

C:

[oNe@!

0

mHLHLH

mmg HHEZ

mmmg

mm g

How do you make it sprinkle? [C trying to figure out how
kitchen faucet works] [after getting it to sprinkle] How do
you make it unsprinkle?
I'm gonna unhang it. [taking stocking down from fireplace]
You can take it unapart and put it back together. [C
manipulating a take-apart toy. Here un- has migrated to the
wrong part of speech]
Will you unopen this? [wants F to take lid off styrofoam
cooler]

. unpatting it down. [as C pats ball of ground meat into
hamburger patty]
Why did you unclothes her? [M has taken C’s clothes off]
Why did I what?
Why did you unclothes her?
Why did I what?
Um ... why did you take her clothes off?
I can’t untight. [= loosen; E struggling with tight overall
strap]
I have to capture you. [grabbing E in game]
Uncapture me! [trying to pull loose]
How do you unsqueeze it? [C coming to M with clip earring
hanging from ear]
What?
How do you unget it . . . undone?
I know how you take these apart. Unsplit them and put ‘em
on. [holding up chain of glued paper strips]
How do you unsplit them?
Like this [pulling a link apart]
Will you unpeel the banana? [giving banana to M ]

. and then unpress it out. [showing M how to get
playdough out of a mould]
How do you unpress it out?
You just take it out.
You slip it across . . . and you unslip it like this [showing M
how to work clasp on coin purse; as E says ‘slip’, she moves
the two metal parts past each other so that purse closes; as
she says ‘unslip’, she opens it]

Note: D, C and E are the initials of three children’s names, and M denotes mother.
Ages are given in ‘years; months’. The results are taken from Bowerman (1982,
1988) and Clark et al. (1995) (reproduced with permission of the authors).

Appendix B: Verbs Used in the Input Corpus

un- Verbs

arm

bandage
bind
bolt

cork lace screw
cover latch settle
crumple leash sheathe

curl link snap



braid
buckle
button
chain
clasp
clench
clog
coil

dis- Verbs

affiliate
appear
arrange
assemble
charge

Zero Verbs

affect
agree
allow
approve
ask
become
begin
believe
bend
break
bring
bury
call
capture
clear
close
come
confirm
deprive
detach
embarrass
expel
fill

Cryptotype, Overgeneralization and Competition

delete
do
dress
fasten
fold
hinge
hitch
hook

connect
continue
embark
engage
entangle

find
free
freeze
get
give
go
grip
grow
hang
hate
hear
help
hold
invite
keep
learn
lift
like
live
look
loosen
make
melt

load
lock
mask
pack
plug
ravel

reel

roll
scramble

infect
integrate
locate
mantle
mount

move
obey
open
pat

pay
peel
plant
play
pose
possess
press
pull
put
reach
release
remove
reverse
run

say

see
separate
show
sit

strap
tangle
tie
twist
veil
wind
wrap
zip

place
prove
trust

unite

slip
solve
speak
spill
split
sprinkle
squeeze
stand
start
stop
straighten
strip
tack
take
talk

tell
tighten
turn
use
wait
walk
work
write
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Appendix C: Semantic Features and Feature Vectors as
Representations of Verbs

connect link turn
Semantic features (dis-) (un-) (zero)
(1) Mental activity 0.1 0.1 0.0
(2) M anipulative action 0.7 0.9 0.6
(3) Circular movement 0.0 0.0 0.6
(4) Change of location 0.1 0.1 0.5
(5) Change of state 0.3 0.3 0.1
(6) Resultative 0.3 0.4 0.3
(7) A affects B 0.2 0.3 0.5
(8) A touches B 0.9 0.9 0.1
(9) A distorts B 0.1 0.0 0.3
(10) A contains B 0.0 0.1 0.1
(11) A hinders B 0.1 0.2 0.1
(12) A obscures B 0.0 0.0 0.0
(13) A surrounds B 0.2 0.3 0.1
(14) A tightly fits into B 0.6 0.7 0.0
(15) A is a salient part of B 0.5 0.7 0.1
(16) A and B are separable 0.6 0.4 0.1
(17) A and B are connectable 0.7 0.8 0.0
(18) A and B are interrelated 0.5 0.6 0.0
(19) A and B are in orderly structure 0.3 0.5 0.0
(20) A and B form a collection 0.6 0.5 0.0

Note: In the semantic judgement experiment, subjects were given more detailed descriptions of
these features in sentence format.



