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T his study exa mined the role of covert semantic cla sses or `cryptotypes’ in determining

children’s overgenera liza tions of reversive pre® xes such a s un- in * unsqueeze or

* unpress. A tra ining corpus of 160 E nglish verbs was presented incrementa lly to a

back propa ga tion network . In three simula tions, we showed tha t the network developed

structured representa tions for the sema ntic cryptotype a ssocia ted with the use of the

reversive pre® x un- . Overgenera liza tions produced by the network , such a s * unbury or

* unpress, ma tch up well with a ctua l overgenera liza tions observed in human children,

showing tha t structured cryptotypic sema ntic representa tions underlie this overgenera liz-

a tion behaviour. S imula tion 2 points towa rds a role of lexica l competition in morphologica l

a cquisition a nd overgenera liza tions. S imula tion 3 provides insight into the rela tionship

between pla sticity in network lea rning and the a bility to recover from overgenera liza tions.

T ogether, these a na lyses pa int a dynamic picture in which competing morphologica l devices

work together to provide the best possible match to underlying covert sema ntic structures.

keywo r ds: C onnectionist model, language acquisition, cryptotype.

1. Intr oduc tion

In one of the classic papers of early cognitive linguistics, Whorf (1956 , p. 71 )

argued that links between language and culture are often most fully revealed in

covert grammatical categories. U sing the E nglish reversive pre® x un- as an

illustration, Whorf called attention to the simple fact that E nglish speakers can

produce a wide range of verbs with this pre® x, such as uncoil, uncover, undress,

unfa sten, unfold, unlock , untie or unta ngle. H owever, there are many other seemingly

paralle l forms that are not allowed, such as * unbury, * un® ll, * ungrip, * unhang,

* unpress, * unspill, * unsqueez e or * untighten.1 Why are some of these derivations

permitted and others not? Whorf believed that there was a category underlying all

these formations that made its presence known only through the restrictions that

it placed on the pre® x un-. In contrast to `overt’ or `phenotypic ’ grammatical
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categories, such as the past tense (-ed) or the plural (-s) , this category was not

marked by a surface morpheme, but only by its effects on the licensing of possible

combinations. B ecause this category functions only covertly, Whorf called it a

`cryptotype’ .

Whorf further noted that, for this category: ``we have no single word in the

language which can give us a proper clue to its meaning or into which we can

compress this meaning; hence the meaning is subtle, intangible, as is typical of

cryptotypic meanings’ ’ . None of the standard categories of L atin grammar can be

used as a basis for a rule to tell us when we can use un- and when we cannot. T he

distinction is not grounded on some single feature such as `transitivity’ , `iterativity’

or `intentionality’ . Instead, according to Whorf, the set of verbs that can be pre® xed

with un- seems to share a ``covering, enclosing, and surface-attaching meaning’ ’ .

Only verbs that partake in this cryptotype are licensed to receive the un- pre® x.

We believe that the study of small semantic ® elds, such as those underlying

Whor® an cryptotypes, can have four important implications for connectionist

models of language learning:

(1 ) Understa nding sema ntic structures. T he process of constructing working

simulations for speci® c word derivations can force us to restate the notion of

a cryptotype in detailed mechanistic terms. In these simulations, distributed

representations play an important role in replacing the older analytic

frameworks of categories and rules (L akoff, 1987 ; M acWhinney, 1989).

(2 ) Sema ntic grounding. M ore generally, it is important that connectionist models

of language learning be grounded on more complete and realistic semantic

analyses (C ottrell & Plunkett, 1994) . Analysis of small semantic ® elds is a good

starting point for providing a detailed semantic grounding to neural network

models.

(3 ) Productivity a nd overgenera liza tion. B y attempting to model the empirical data

on derivational overgeneralizations such as * unsqueez e or * unspill, we can

deepen the link between models and complex developmental data (B owerman,

1982 ; C lark et a l. , 1995) .

(4 ) Competition. B y looking not only at a single pre® x such as un , but also at

competing pre® xes such as dis- or mis-, we can obtain a better understanding

of how cryptotypes work within the larger framework of language production.

B efore presenting our simulations, we would like to consider each of these four

issues in further detail. In each case, we are interested in ways in which this initial

study of a single , limited semantic ® eld can provide us with conceptual

underpinnings for a more broadly based, semantically grounded, connectionist

model of language processing and language acquisition.

1.1. Understa nding S emantic S tructures through Connectionist M odelling

Whorf ’ s understanding of the cryptotype which licenses the reversive pre® x un- is

based on a ``covering, enclosing, and surface-attaching meaning’ ’ . S hould this

meaning be viewed as a single unit, as three separate meanings or as a cluster of

related meanings? D o these notions of attachment and covering exhaust the

subcomponents of the cryptotype, or are there additional underlying components?

S ubsequent analyses have suggested certain additional components not initially

mentioned by Whorf. F or example, M archand (1969) and C lark et a l. (1995) argue

that all verbs that license un- involve a change of state. In addition, these verbs
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involve a transitive action that has a direct object. T his transitive action typically

reaches a terminal point in time, in which case it is called a `telic’ verb;

alternatively, it reaches some end-state or result, in which case it is called an

`accomplishment’ verb (Vendler, 1967) . When the meaning of a verb does not

involve a change of state or does not indicate telicity or accomplishment, then the

verb cannot take un-. T herefore, verbs such as * unswim , * unpla y and * unsnore are

ill-formed semantically, because the base forms involve continuous actions without

a terminal point or end-state that could be reversed (H orn, 1988) .

A connectionist implementation of the semantics of the reversive cryptotype

provides us with a natural way of capturing these insights in a formal mechanism.

In this implementation, there can be several `mini-cryptotypes’ which work

together as interactive `gangs’ (M cC lelland & R umelhart , 1981) to support the

formation of the larger cryptotype. T hese mini-cryptotypes are not in competition;

instead, they work in terms of summed activation to support the licensing of un-

for a particular verb. F or example, `enclosing’ verbs, such as coil, curl, fold, reel, roll,

screw, twist and wind , all seem to share a meaning of `circular movement’ . Another

mini-cryptotype includes verbs such as bind, buck le, fa sten, la tch, lea sh , lock , strap,

tie and z ip, which have a `binding’ or `locking’ meaning. A third mini-cryptotype

includes `covering’ verbs such as cover, dress, mask , pa ck , veil and wra p. F inally, a

fourth mini-cryptotype includes `attaching’ verbs, which usually involve hand

movement, such as cla sp, fa sten, hook , link , plug and tie.

T hese mini-cryptotypes or mini-gangs can interact cooperatively, because they

are closely related to one another. F or example, the verb screw in unscrew may be

viewed as having both a meaning of circular movement and a meaning of binding

or locking, while the verb zip in unz ip may be viewed as sharing both the

`binding/locking’ meaning and the `covering’ meaning. M oreover, both screw and

zip involve hand movements. In addition to such overlaps of semantic features, a

verb may also have a feature in its inherent meaning at varying degrees of strength.

F or example, the verb wrap may be viewed as having the covering meaning.

H owever, in some cases, the action of wrapping may also involve circular

movements. T hese properties of feature overlap and degraded featural composition

lend themselves naturally to the distributed representations used in neural

networks. While it seems dif® cult for symbolic representations to come up with

satisfactory accounts for cryptotypes, the distributed representations and the

non-linearities of neural networks seem to be ideal for handling the elusiveness and

gradience of these semantic structures.

1.2. Sema ntic G rounding

T he second issue that we address in this work is the role of semantic grounding in

neural network modelling. In the past decade, there has been heated debate on

connectionist and symbolic models of learning in the acquisition of the E nglish past

tense (H oeffner, 1992 ; M acWhinney & L einbach, 1991 ; P inker & Prince, 1988 ;

Plunkett & M archman, 1991 , 1993 ; R umelhart & M cC lelland, 1986). An important

limitation of the connectionist simulations involved in this debate has been that the

input to the network included only phonological information but no true semantic

information. T he use of only phonological information in these simulations was

based largely on considerations of practicality and simplicity. However, this

simpli® cation is at odds with the basic emphasis that connectionist models place on

non-modular cue interaction in word recognition and word production.
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In an effort to broaden the connectionist approach to word formation, C ottrell

and Plunkett (1991) , H oeffner (1992) and M acWhinney (1996a) have used

randomly generated input that is supposed to represent semantic structure.

Although this inclusion of a random, schematized semantic structure helps to bring

us closer to a realistic simulation, it is clear that we would be on much more solid

ground if we could code our input data in terms of descriptively meaningful

semantic representations. B ecause of the primitive state of the art in computational

lexicography, we cannot do this for large segments of vocabulary. However, if we

work with small, well-de ® ned areas of the lexicon, then it is possible to construct

a reasonable and coherent semantic input set. T he construction of such a realistic

semantic input set is one of the principal goals of the current work.

1.3. Productivity a nd Overgenera liza tion

T he third issue to which this work relates is the issue of productivity and

overgeneralization in language development. If speakers simply learned verbs such

as untie and uncoil by rote and showed no awareness of the productivity of the

cryptotype, then we could easily dismiss Whorf ’ s description as a ® gment of an

overheated linguistic imagination . However, Whorf was careful to remind us that,

despite the dif® culty that linguists experience in characterizing this cryptotype,

native speakers of E ngish have an intuitive feel for which verbs can and cannot be

pre® xed with un-. H e presented a thought experiment based on what is now a

standard procedure in recent psycholinguistic investigations (see, for example,

G ropen et a l., 1992 ; Pinker et a l., 1987) . Whorf reasoned that, if we are told that

¯ immick means `to tie a tin can to something’ , then we are willing to accept the

sentence `He un¯ immicked the dog’ as expressing the reversal of the `¯ immicking’

action. However, if we are told that ¯ immick means `to take apart’ , then we will

not accept `He un¯ immicked the puzzle’ as describing the act of putting a puzzle

back together. Whorf took this as evidence in support of his claim that we all

possess an intuitive grasp of the cryptotype that underlies morphological

productivity for the reversive .

C hildren ’s overgeneralization errors also provide evidence of the reality of the

cryptotype. B owerman (1982 , 1983 , 1988) showed that the learning of un- goes

through a four-staged developmental pattern. In the ® rst stage, children treat un- and

its base verb as an unanalyzed whole and produce un- verbs in appropriate contexts.

T his initial stage of rote control is analogous to the child saying went without realizing

that it is the past-tense form of go . According to C lark et a l. (1995) , children talk

about the reversal of actions long before they have acquired the productive use of un-.

T hey rely on particles such as off and ba ck or verbs such as open to express the notion

of reversal. Although children understand the meaning of reversal at this early stage,

this understanding does not automatically lead to productive uses of un-.

T he second stage in the development of un- begins around age 3 , with the ® rst

overgeneralizations in spontaneous speech. In an elicitation task, C lark et a l. found

that children ’s use of un- increased steadily with age from 3 to 5 , with older

children producing overgeneralizations such as * unbend, * unbury, * uncrush ,

* ungrow, * unstick and * unsqueeze. T hese elicited overgeneralizations match up well

with spontaneous overgeneralizations such as * una rrange, * unbreak , * unblow,

* unbury, * unget, * unhang, * unha te, * unopen, * unpress, * unspill, * unsqueez e or * unta k e

(B owerman, 1982 ; C lark et a l., 1995) . At this stage, the overgeneralized un- verbs

do not all respect Whorf ’ s cryptotype.
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In the third period of development, children begin to restrict overgeneraliz-

ations to forms that ® t within the cryptotype, but whose adult forms do not exist,

such as * unbury, * unpress and * unsqueeze. D uring this same period, we also ® nd

certain `overmarking’ errors. F or example, the child might say * unopen and really

only means to say open, or the child might say unloosen and really only means loosen.

In such cases, the base forms open and loosen have a reversive meaning that triggers

the attachment of the pre® x, even when the action of the base meaning is not

actually being reversed. E rrors of this type include the forms * unopen, * unta ngle,

* unplug and * unloosen which are attested in corpora in the C hild L anguage

D atabase E xchange S ystem (C H IL D E S ) (M acWhinney & Snow, 1985 , 1990 ;

M acWhinney, 1995), as well as in elicited errors reported by C lark et a l. (1995) .

T hese overmarking errors are analogous to redundant past-tense marking in

* ca med and redundant plural marking in * feets (B rown, 1973). T he C HIL D E S

database includes other errors, most of which ® t the cryptotype of un- , such as

* unblow, * unbuild, * unca tch, * uncuff, * unhand, * unlight, * unpull, * unstick and

* unz ipper, that can be found in the B rown, C lark, G leason, K uczaj, M acWhinney

and Snow corpora. Appendix A lists examples of reversive errors in children ’s

speech as reported by B owerman (1982 , 1988) and C lark et a l. (1995) , along with

the glosses and the context in which they were produced.

In the fourth or ® nal stage, children begin to display adult-like control of the

reversives, and errors with these verbs decline.

1.4. Competition

T he cooperative effects that support the operation of the un- cryptotype are

matched by competitive effects from other negative pre® xes. T he commonly used

negative pre® xes in E nglish include de- , dis-, in- , mis- and un-. O f these, the two

reversive pre® xes that are in closest competition are un- and dis-. T hese designate

the reversal of the action speci® ed by the base verb, as in untie and disconnect.

U nlike un-, the pre® x dis- has received little discussion in the child language

literature. H owever, dis- is equally interesting and important in our view.

According to Horn (1988), dis- competed successfully against un- during the

M iddle E nglish period to take overmarking of stative verbs such as displea se or

distrust (which had been unplea se and untrust) . As a result, the scope of un- was

narrowed to only action verbs. As a consequence of historical change, verbs that

take un- are typically G ermanic in origin, whereas verbs that take dis- are typically

R omanic in origin. In M odern E nglish, dis- and un- still compete as alternative

devices for marking reversal (B auer, 1983 ; M archand, 1969). T his competition

involves a close overlap in the basic function of the pre® x and a semantic overlap

between the cryptotypes involved in the verbal stems. F or example, the base verbs

in disa ssemble, disconnect, disenga ge, disenta ngle, dismantle, dismount and disunite all

® t the cryptotypic meanings of binding, covering and attaching, which are also

involved in the cryptotype for verbs that take un- . One result of this overlap is that

many of the dis- verbs and un- verbs are synonymous: for example, disconnect vs

unlink , disenta ngle vs unta ngle, dismount vs unloa d, disenga ge vs uncouple or disjoin vs

unyok e. Another result of the close competition between dis- and un- is that some

verbs allow both dis- and un-, but with different meanings: for example, uncover

and discover. F inally, some dis- verbs have counterpart un- verbs in their

past-participle forms, such as disconnected vs unconnected, discon® rmed vs

uncon® rmed and disa rmed vs una rmed. Although the meanings of these pairs are not
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the same, they indicate the nature of competition between the two reversive

pre® xes.

D espite the fact that many verbs use the pre® x dis-, it appears that un- is now

far more productive for new verbs. M any of the uses of dis- in the lexicon are no

longer available analytically. In some cases, there is no positive form of the dis-

verb: for example, discuss, dispel, disturb and distort. In other cases, there is no

apparent semantic relationship between the positive verb form and the negative dis-

form: for example, dismiss, dispose, dissolve and displa y. In still other cases, the

meaning of dis- is simply negation, and not reversal, as in disagree, disa pprove and

disa llow. F urthermore, dis- is used for many abstract mental verbs that children are

unlikely to use until they are much older. T hese facts suggest that the child may

have to learn many of the dis- verbs by rote. T he generalization of dis- to novel

forms may, to some extent, be constrained by this kind of rote learning.

T he limited productivity of dis- in the adult language does not necessarily

suppress the child’ s early ability to generalize , especially if the child encounters

both un- and dis- in the same kind of negative context. T here are cases in

B owerman’s (personal communication, 1992) data in which children replace

disenroll with * unroll, and disa rrange with * una rrange. In these cases, un- and dis-

are clearly in competition. T here is also evidence that children sometimes treat dis-

as a separate form, even though it is not separable from the base form in the adult

languages. F or example, in Hall’ s data (C H IL D E S E nglish database) , the child

says `it’ s dising appear’ , showing that she treats dis- and a ppea r as two distinct

components. B y examining the performance of dis- ( together with un-)

in our network, we may be better able to understand the processes involved in the

acquisition of reversive pre® xation. H owever, because there has as yet been no

empirical report on the acquisition of dis-, our simulation results with this pre® x

are presented as generating hypotheses to be tested experimentally.

In summary, by examining these four issues in this study, we hope to provide

insights into the representation of verb semantics and the learning of E nglish

reversive pre® xes. T o achieve this goal, we constructed an incremental

backpropagation network to learn the reversive un- and dis- in three different sets

of simulations.

2. S im ula tion 1

2.1. Method

2.1.1. Input corpus. In this study, the network was trained to map meanings of

E nglish verbs on to the different pre® xation patterns. T he input to the network was

a corpus of verbs encoded as semantic feature vectors. A total of 160 verbs were

selected from two sources: W ebster’s New C ollegia te Dictiona ry and the corpus of

K ucera and F rancis (1967 ; henceforce K &F ). Our data set consisted of 49 un-

verbs, 19 dis- verbs and 92 `zero verbs’ , which take neither un- nor dis- (see

Appendix B for a complete list of the verbs) . Webster’ s contains other verbs

pre® xed with un- or dis-, but many of theseÐ such as unwish , unlive and

disa nnul Ð are unacceptable or unfamiliar to modern-day E nglish speakers. T he

® nal selection of the 49 un- verbs and 19 dis- verbs was based on native-speakers’

judgements of the acceptability of all the non-archaic un- and dis- verbs that

appeared in Webster’ s. In the case of un-, 14 subjects were asked to rate how good

each verb sounded to them on a scale of 1 to 7 (from `completely weird’ to
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`perfectly natural’ ) and only those with an average rating of 5 .0 or above were

selected. T he 19 dis- verbs also excluded rarer, highly abstract items, such as

disenta il, disfra nchise and disinherit; forms that are not clearly primarily verbal, such

as disa dva nta ge; and forms with no true base, such as dispel, distort or disturb.

F inally, we randomly selected 92 zero verbs from Webster’ s that can be pre® xed

with neither dis- nor un-. H alf of these were high-frequency verbs (above 100) in

the K &F counts and half were low-frequency verbs (below 100). T he relatively

higher proportion of zero verbs as compared with un- and dis- verbs is intended to

represent the distribution of these forms in the input to children .

E ach of the 160 verbs was encoded as a set of semantic features with

continuous values. B ecause there has been no systematic account of the un- and

dis- verbs with respect to their semantic composition, the ® nal selection of the 20

semantic features was based partly on the limited literature available on this topic

(Whorf, 1956 ; M archand, 1969 ; L evin, 1993) , and partly on our own linguistic

analysis (see Appendix C for a complete list of the features) . T hese features include

some general characteristics of actions (features 1 ± 6 ; see Appendix C ),

relationships between entities (features 7 ± 15 ) and joint properties of entities

(features 16 ± 20 ) . T hey are designed to capture the semantic range of the verbs that

can be pre® xed with un- and dis-, as well as verbs that undergo no pre® xation.

T hese features, when combined in a distributed representation, provide a semantic

basis for distinguishing verbs that can take the reversive pre® xes from those verbs

that cannot. Our feature coding focused on an attempt to capture basic linguistic

and functional properties. It is possible that a more elaborate feature coding

process could further emphasize the distinctions between individual verbs in a way

that could facilitate aspects of learning and generalization (Plaut et a l., 1996 ;

Plunkett & M archman, 1991).

T he assignment of particular features to particular verbs was based on empirical

data. We presented 15 native speakers of E nglish with the 160 verbs and the 20

semantic features, and asked them to evaluate each verb with respect to each

feature, to determine whether or not the particular feature applies to that particular

verb. S ubjects rated the feature as being relevant to the verb if they thought that

the feature was characteristic of, or typically involved in, the situation denoted by

the verb. T herefore, for each subject, we had a feature-by-verb matrix of 0s and 1s

(0 means that the feature is irrelevan t to the verb, and 1 means that the feature is

relevant) . In this way, the averaged rating scores from the 15 subjects were the

graded patterns used as input to the network. In this case, each verb was encoded

as a vector of the 20 features, with values between 0 and 1 . Although there were

varying degrees of similarity among verbs represented in this way, the

representation of a given verb was distinct from that of any other verb. In other

words, no two verbs shared exactly the same values for all the 20 features. S ome

examples are given in Appendix C , along with the features.

T o evaluate the validity of the results from our semantic judgement experiment,

we conducted a hierarchical cluster analysis on the verbs encoded as feature

vectors. T he results show that synonymous words tended to group together as

clusters, indicating that subjects were consistent in their coding of verbal features.

2.1.2. N etwork architecture. Our simulations used a standard three-layer

backpropagation network (R umelhart et a l. , 1986) . T here were 20 input units

encoding the verbal semantic features, six hidden units, and three output units
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T able I. Vocabulary structure across pre® xation

patterns in S imulation 1

T otal dis- un- Zero

2 0 2 8 10

4 0 6 18 16

6 0 9 23 28

8 0 11 30 39

10 0 12 37 51

12 0 15 43 62

14 0 19 49 72

N ote: T he 2 0 zero verbs in the initial training are not included here.

representing un-, dis- or zero pre® xation. All simulations reported in this study used

this same basic architecture. T he learning rate and momentum were held constant

across all simulation trials. T he simulations were conducted using the T L E AR N

program con® gured at the C enter for R esearch in L anguage, U niversity of

C alifornia at S an D iego.

2.1.3. T a sk a nd procedure. T he task for the network was to learn to classify the

verbs into three categories: those that can be pre® xed with un-; those that can be

pre® xed with dis-; and those that cannot be pre® xed with either.

We applied an incremental learning schedule to re¯ ect more realistically the

realities of lexical acquisition (E lman, 1993 ; M acWhinney & L einbach, 1991 ;

Plunkett & M archman, 1993). C hildren typically build up their vocabulary in an

incremental fashion, rather than learning all words at once. In the incremental

schedule used here, lexical items entered the training corpus one by one, although

with different rates at different learning stages. B efore the network learned 60

verbs, the rate of vocabulary growth was one verb every ® ve epochs of training.

B etween 60 and 100 verbs, the rate increased to one verb every three epochs of

training. After 100 verbs, the rate was one verb every one epoch of training. T his

increasing rate was intended to re¯ ect the accelerating function in children ’s

vocabulary growth (Plunkett & M archman, 1993). T able I presents the vocabulary

increase process after the initial training in S imulation 1 .

Prior to incremental training, the network was trained on 20 high-frequency

zero verbs. T his was carried out to re¯ ect the fact that, before children learn

negative pre® xes, they have already learned some verbs that undergo no

pre® xation. After this initial training, the remaining verbs entered the training

corpus one by one. T he order in which they entered training was determined by a

weighted random selection process. T he weighting was based on the type

frequency (un-, dis- and zero) and the token frequency of the verbs. T he token

frequencies of the zero verbs were rank ordered on a scale of 1 to 5 , according to

the K &F norms. A verb was assigned a rank of 1 if its K &F frequency count was

20 or below, and a rank of 5 if the count was above 500 ; ranks of 2 ± 4 had K &F

counts of 21 ± 50 , 51 ± 200 and 201 ± 500 respectively. T he token frequencies of the

un- and dis- verbs were randomly rank ordered, since most of these verbs were of

low frequency in the K &F counts (simply because K &F counts were based on

written data) . When fed into the network for training, a verb was repeated a given

number of times, according to its frequency rank as calculated above.
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2.1.4. Da ta a na lysis. We analyzed the network’s performance by examining the

activation of the three output units (un-, dis- or zero) . T he root mean squared error

(rms) score was used to determine the match between the network’s output pattern

and the prede® ned target pattern. If the rms fell below 0.25 , then the output was

deemed to be adequate as the correct target. T his criterion is roughly equivalent

to the activation of the target unit at or above 0 .8 , with the sum of the activations

of the incorrect units not exceeding 0 .2 . All other patterns were considered to be

incorrec t.

T he network’s performance was also assessed at regular intervals with

hierarchical clustering analysis ( see E lman (1990) for application of this method in

network analysis) . T his technique allows us to discover the relative semantic

distances between different verbs that the network represents at the hidden-unit

layer, across various time points during learning. E arlier, we used this method to

study the semantic judgement results. In what follows, we will use this method to

analyze the hidden-unit activation patterns, to determine if the network has

developed meaningful and structured representations about the input± output

relationships.

2.2. Results a nd Discussion

F igure 1 presents the percentages of the verbs that have been learned correctly after

the initial training, across the vocabulary expansion process. T he graph is broken

down into three parts (F igures 1 (a) ± (c)) by the different pre® xation types (i.e. un-,

dis- and zero). One can immediately observe that the network quite ably learned

both the un- and the zero verbs but failed to learn the dis- verbs. Although the

performance with the un- and the zero verbs far exceeded that of the dis- verbs, the

network still failed to learn some of the un- and zero verbs, even when all words

entered training at the end (24% errors for un- and 26% for zero) . T his failure

re¯ ected the network’s inability to recover from overgeneralization errorsÐ a point

to which we will return shortly.

T he network acquired a distinct mapping for the un- verbs, by identifying

covert semantic categories (i.e. cryptotypes) inherent in these verbs. T he cluster

analysis of the hidden units given in F igure 2 reveals that, by the 50-word level,

the network had formed a structured internal representation. It should be noted

that the capitalized marker after each verb in the ® gure is a mnemonic for the

pre® xation pattern of each verb; the actual input consists of the base verbs without

any pre® xes. In F igure 2 , verbs that are closely related in meaning are grouped

lower in the tree,2 while clusters of verbs that are similar to other clusters are

connected higher in the tree. In addition, we can observe two general clusters in

this tree: one cluster for the un- verbs, and the other cluster for the zero verbs. If

the network had not developed meaningful structures, then we would not expect

to ® nd meaningful clusters in the tree.

In F igure 2 , most of the verbs in the un- cluster share the cryptotypic meaning

of binding or locking: for example, bind, cha in, fa sten, hitch , hook and la tch. T he

network’s representation of this meaning was so strong that synonymous verbs in

the other categories were also included in the un- cluster (such as hold and mount) ;

hence, overgeneralizations of un- on these verbs. C learly, these synonymous verbs

were included because of their semantic similarity with the cryptotype. B ecause

vocabulary growth was incremental, not all cryptotypic meanings were identi ® ed at

the same time. Instead, mini-cryptotypes emerged at different times, depending on
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F igur e 1. Per cent correct of pre® xation as a function of vocabulary increase for

(a) un- verbs, (b) dis- verbs and (c) zero verbs in S imulation 1 .
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F igur e 2. Hierarchical cluster tree of the network’s representation of the semantic

structure of verbs at the 50-word boundary in S imulation 1 .

what words the network had learned at a given time. F igure 2 shows, for example,

that the network had not yet developed a clear representation for the ``enclosing’ ’

verbs that involve circular movements. T he verbs ra vel and coil were correctly

categorized into the un- cluster, but the verb roll was incorrectly treated as a zero

verb.

T he network received no discrete label of the semantic category associated with

un-, and there was no single categorical feature telling which verb should take

which pre® x. All the network received was semantic featural information

distributed over different input patterns. Over time, however, the network was able

to develop a structured representation for the mini-cryptotypes in the input± output

mapping process. T he structured representations in the network emerged as a

function of its learning of the association between form and meaning, and not as

a property that was given to the network by the modeller. An important implication

of this result is that children , in learning to use the reversive pre® x un-, also abstract
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the semantic regularitie s in the un- verbs through combinatory restrictions that the

pre® x places on these verbs ( see B owerman, 1982 , 1983) . T he children are not

learning a rule in this case, because the rule itself is not clear; in Whorf ’ s words,

the rule is `subtle’ and `intangible’ .

In contrast to the case with un-, the network developed no clear representation

for the dis- verbs. T hree of the four dis- verbs trained during the ® rst 50 words were

clustered with the un- verbs, and one with the zero verbs. T he reasons for the

network’s inability to learn the dis- verbs are as follows:

(1 ) T he network had seen only a few dis- verbs up to this point.

(2 ) T he dis- verbs entered the learning process only sporadically (as a result of

weighted random selection) .

(3 ) T he dis- verbs do not have a semantic structure as uni® ed as that of the un- verbs.

H ow does a structured representation of the un- cryptotype in¯ uence the network’s

learning of reversive pre® xes? E mpirical research in child language indicates that

there are two possible roles for the cryptotype. T he ® rst function of the cryptotype

is to overcome overgeneralizations made at an earlier stage, if these over-

generalizations involve verbs that fall outside the cryptotype, such as * uncome,

* unha te and * unta k e (B owerman, 1982). T he second function of the cryptotype is

to induce new errors. T his occurs because, once children have identi ® ed the

cryptotype, they will overgeneralize un- to all verbs that ® t the cryptotype,

irrespective of whether or not the adult form actually allows un- pre® xation.

Our simulation results provide particular support for the second role of a

cryptotype in leading to overgeneralizations. T here were no simulated errors that

constituted ¯ agrant violations of the un- cryptotype, such as the forms * uncome or

* unha te reported by B owerman (1982). All overgeneralize d verbs remained within

the scope of the cryptotype. Overgeneralizati ons occurred after the network had

developed some structured cryptotypic representation, including (in order of

occurrence) : * unhold, * unpress, * un® ll, * unca pture, * unsqueeze, * unfreeze, * untighten,

* unta ck , * unbury, * unpla nt, * unpeel and * ungrip. T hese results matched up very well

with available empirical data. F or example, errors such as * unbury, * unca pture,

* unpeel, * unpress, * unsqueeze and * untighten all appeared in B owerman’s (1982)

data. Other simulated errors, such as * unsplit, * unm elt, * unloosen and * unstrip re¯ ect

typical cases of children ’s overmarking of un- with verbs whose base form already

indicates the reversal of the cryptotypic meaning, such as * unopen, * unsplit or

* una pa rt (see B owerman, 1982 ; C lark et a l., 1995) .

One of the two children discussed in B owerman (1982) displayed the same

patterns as those simulated in the network. T he overgeneralizations that the child

produced all fell into the cryptotype, and her acquisition of un- as a reversive pre® x

is closely associated with her discovery of the cryptotypic meanings of the un-

verbs. In C lark et a l. ’ s (1995) naturalist ic data, the child’ s innovative uses of un-

also respected the cryptotype from the beginning. C lark et a l. noted that the child’ s

use of un- matched the semantic characteristics of the cryptotype, even when the

conventional meanings of the verb in the adult language did not: * unbuild was used

to describe the action of detaching lego-blocks; * undisa ppea r was used to describe

the releasing of the child’ s thumbs from inside his ® sts. T he child seemed to have

recognized that un- marks the reversal of actions and that it can do so only for

certain kinds of action (i.e. actions that ® t the cryptotypic characteristics of

binding, covering, enclosing and attaching).

Another child in B owerman’s (1982) data displayed a different pattern. S he
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started to use un- productively before she recognized the cryptotype associated with

the un- verbs. Only later on did she restrict the use of un- to verbs that ® t the

cryptotype, in which case the cryptotype helped her to recover from earlier errors.

H owever, a detailed examination of the child’ s early errors revealed that she used

un- in those cases to mean `stop doing something’ , rather than the reversal of an

action, such as in * uncome and * unha te. T his `stop doing X ’ meaning of un- could

be a precursor of the reversive meaning of un-, and it is likely that the child came

to recognize the reversive meaning of un- simultaneously as she recognized the

cryptotypic meanings of the verbs. As C lark et a l. (1995) pointed out, children can

express the notion of reversal long before they have acquired the pre® x un-, relying

on negative particles (such as off and ba ck ) or general-purpose verbs (such as open

or undo ) . T herefore, it is natural that, when learning to use un-, they pay attention

to the cryptotypic constraints that un- places on the verb in terms of telicity,

accomplishment and other features. T his explanation is compatible with C lark’ s

(1987) `principle of contrast ’ or M acWhinney’ s (1989) `principle of competition’ ,

which states that children tend to assign different functions to distinct forms.

T he role of the cryptotype in inducing overgeneralizations can also be observed

with the dis- verbs. Earlier, we observed that the network cannot learn the dis- verbs, as

a result of the absence of a distinct cryptotype for these verbs, as well as the way in

which they entered training. Interestingly, the network overgeneralize d un- to a number

of dis- verbs that shared the cryptotypic meaning of un-, producing errors such as

* una ssemble, * unenta ngle, * unmount and * ununite , all of which, in the adult language,

should be pre® xed with dis- instead of un- . T hese dis- verbs all entered the learning

process when the network had already constructed a clear representation of the un-

cryptotype. Although overgeneralizations on dis- verbs are rare in children ’s speech,

the results show that, once the system starts to overgeneralize on the basis of the

cryptotype, it does so to all the verbs that share the semantic characteristics of the

cryptotype.

T o summarize, this simulation has shown that the network exhibits learning

patterns that closely resemble those of a human child. T he model learns to extract

the shared aspects of the semantic properties associated with un-; builds a

structured representation of the semantic cryptotype; and uses this representation

as a basis for productive and innovative use of the negative pre® xes. Over-

generalization of un- is simply a result of such productive and innovative uses. T he

results also indicate that our network can use a distributed input to extract an

internalized structured representation that expresses the `subtle’ or `intangible’

aspects of cryptotypes.

S imulation 1 suffered from two major mismatches to the empirical data and the

network performance could not improve after even prolonged continuous training

(an additional 500 epochs) . F irst, the network was unable to learn the dis- verbs.

H owever, children are able to learn these verbs. Second, the network was unable

to recover from overgeneralizations that involved verbs that fall within the range of

the semantic cryptotype (see F igure 1(c)) . However, children are eventually able

to restrict these overgeneralizations. In both cases, children can probably rely on

verb-by-verb learning of the type discussed in M acWhinney (1996a,b) to rein in

their overgeneralizations and to pick up individual verbs with dis- .

T here are several possible reasons why our network did not show this type of

learning ability. F irst, it is possible that the feature coding system that we have used

in this particular simulation provides few resources for this type of verb-by-verb

restriction. A richer coding may facilitate a greater separation between individual
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verbs. S econd, it is possible that the absence of a phonological code made it

dif® cult for the network to treat individual verbs differently. T hird, it is possible

that the dif® culties that the network experienced in learning dis- verbs were due to

the shape of the input training corpus. In the next simulation, we explore this ® nal

possibility. We discuss the ® rst two possibilities later.

3. S im ula tion 2

T o examine one possible cause of the dif® culties that the network had in learning

to use dis- , we modi® ed the procedure by which input data entered the learning

process. S imulation 2 was based on this new input procedure.

3.1. Method

T he input data, the network architecture and the data analysis methods used in

this simulation were identical to those in S imulation 1 . T he task and procedures

were modi® ed in the following ways.

F irst, we hypothesized that the intermittent nature of the training of dis- verbs

in S imulation 1 (as a result of weighted random selection) made it impossible for

the network to extract a semantic representation for this group of verbs. In this

second simulation, we introduced the dis- verbs into training in a more focused

manner, such that all dis- verbs were exposed to the network within the ® rst 35%

(i.e. 56 words) of the data set. T his training schedule was intended to re¯ ect the

fact that children typically learn dis- and un- verbs separately (most dis- verbs

actually occur later than un- verbs in children ’s speech, as in the C HIL D E S

database, for example) . T he other types of verb entered training as in S imulation

1 . Although this training schedule is less realistic than that used in S imulation 1 ,

it allows us to assess the effects of focused training on the competition between the

two ways of marking reversives.

S econd, we wanted to see if the network could learn to use un-

without immediately organizin g its cryptotype. In the ® rst simulation, the network

identi ® ed the cryptotype for un- quite early and easily. We hypothesize that, if the

network had more dif® culty in forming cryptotypes, then perhaps it would initially

overgeneralize un- outside the cryptotype, as was done by at least one of the

children studied by B owerman (1982). Identi ® cation of the un- cryptotype was

made more dif® cult by introducing at the beginning a few un- verbs that do not

clearly belong to the cryptotype (such as undo , undelete or unscra mble) ; introducing

at the beginning several dis- verbs that share the meaning of the cryptotype (such

as disa ssemble, disentangle or dismount) ; and introducing all three types of verbs into

training from the beginnning, without the initial training of zero verbs only. T able

II presents the vocabulary increase process in S imulation 2 .

3.2. Results a nd Discussion

F igure 3 presents the percentages of the verbs that have been learned correctly as

a function of vocabulary increase, broken down by the different pre® xation types

(i.e. un-, dis- and zero). T hree major results emerged from these data. F irst, unlike

in S imulation 1 , most of the dis- verbs (79% ) were learned correctly by the

60-vocabulary-item mark, after which point learning tended to level off. S econd,

unlike in S imulation 1 , a large number of zero verbs and un- verbs were mapped
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T able II. Vocabulary structure across pre® xation

patterns in S imulation 2

T otal dis- un- Zero

2 0 6 8 6

4 0 13 14 13

6 0 19 21 20

8 0 19 32 29

10 0 19 42 39

12 0 19 49 52

14 0 19 49 72

16 0 19 49 92

incorrectly, even after all the words had entered training. T hird, as in S imulation

1 , the network could not recover from overgeneralizations of un- once it committed

these errors.

E arlier, we identi® ed several possible sources of the network’s failure in learning

the dis- verbs. T hese included the interspersed training procedure and the lack of

semantic coherence of the dis- verbs. T he results from this simulation showed that,

if the dis- verbs entered training early on in a more focused manner, then the

network was indeed able to learn these words.

In S imulation 1 , the network overgeneralized un- to dis- verbs, based on their

match to the cryptotype: for example, * una ssemble, * unenta ngle, * unm ount and

* ununite . In S imulation 2 , the network did not make such overgeneralizations,

because these verbs had entered training at an early stage, before the system had

developed a representation of the cryptotype for un-. T o see how this works, let us

consider that, in S imulation 1 , a ssemble entered training as one of the last items in

the vocabulary expansion process, when the network had already developed a ® rm

representation of the cryptotype. In contrast, in S imulation 2 , a ssemble was learned

as a dis- verb shortly after it entered training as the third item, before any

representation for the cryptotype could be formed; hence, no chance for

overgeneralization of un- . T he same account applies to verbs such as entangle,

mount and unite. T hese results once again indicated the role of the cryptotype in

the network’s ability to overgeneralize .

A second major ® nding from Simulation 2 is that the revised training procedure led

to problems in learning many zero and un- verbs. In S imulation 1 , the network

correctly learned 74% of the zero verbs and 76% of the un- verbs. In S imulation 2 , it

learned only 25% of the zero verbs and 51% of the un- verbs. M ost of the errors

involved mapping into incorrect categories; a smaller number involved low activations

on all three output units.

T wo major forces contributed to the network’s poor performance on the zero

verbs. F irst, as in S imulation 1 , the majority of the errors still resulted from the

network’s overgeneralizations of un- verbs based on the cryptotype. T hus,

simulated errors included * unbury, * unclose, * un® ll, * unfreeze, * unha ng, * unhold,

* unloosen, * unm ak e, * unmelt, * unopen, * unpa t, * unpeel, * unpla nt, * unpress,

* unsqueeze, * unstrip, * unta ck and * untighten , which all ® t the un- cryptotype, as in

S imulation 1 . S econd, because there was no initial training in S imulation 2 , the

zero verbs entered training simultaneously with the dis- and the un- verbs, so were

competing directly with them for distinct mapping from the outset. T he focused

training on the dis- verbs was actually disadvantageo us to the zero verbs. As a
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F igur e 3. Per cent correct of pre® xation as a function of vocabulary increase for

(a) un- verbs, (b) dis- verbs and (c) zero verbs in S imulation 2 .
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result, 13% of the errors with the zero verbs were overgeneralizations of dis-,

including the errors * dislea rn, * disinvite, * displa y, * dista lk and * diswrite, all of which

involve mental or cognitive activities. T his pattern of overgeneralization indicates

that the network tended to pick up a cryptotype for the dis- verbs that involved

features for mental or cognitive activities. S uch learning is a reasonable

generalization from exposure to verbs such as disa f® lia te, disenga ge, disentangle,

disintegra te, disprove, distrust and disunite.

T he change of the input also led to more overgeneralizations of dis- to un- verbs.

Of the 49% errors with un- , 39% resulted from overgeneralizations of dis- or the

inappropriate high activation of the dis- output unit. T he network produced errors

such as * disbra id, * discha in, * disclench , * discoil, * disla ce, * disleash , * disscrew and

* dissna p, all of which should be pre® xed with un- in the adult language . T hese

results suggest that the network ® rst extracted the cryptotypic meanings of

attaching, enclosing and binding from the dis- words (such as disa ssemble,

disconnect, disenga ge, disenta ngle, disma ntle and disunite) , which it then used as a

basis for overgeneralization to the un- verbs. T his is the opposite of what we

observed in S imulation 1 , where the network overgeneralize d un- to dis- verbs on

the basis of semantic abstraction.

In this simulation, we modi® ed the initial input sequences to make it more

dif® cult for the network to discover the un- cryptotype. We hypothesized that, if

the initial input is less favourable for the extraction of the un- cryptotype, then the

network might overgeneralize un- before it could develop a committed semantic

representation of the cryptotype. T his did not happen, however. T he initial input

differences to the network did not affect its performance across S imulations 1 and

2 . T he results indicate that changes in the structure of the input delayed both the

extraction of a cryptotype and overgeneralization, so providing support to the

direct link between the growth of the strength of the pre® x and the abstraction of

its underlying conceptual structure, as found in S imulation 1 .

F inally, as in S imulation 1 , the network did not recover from overgeneralization

errors with un-, and continued to produce high error rates for zero verbs, even at

the end. E ven after prolonged continuous training (an additional 500 epochs) , the

network did not converge on the correct mapping patterns. T he network seemed

to have discovered the relationship between the semantic properties of the verbs

and their pre® xation pattern (such as the cryptotype and un-) , and settled on a ® rm

mapping structure, by the time it started to overgeneralize .

T o summarize, in Simulation 2, we have shown that the network can learn the dis-

verbs, provided that these verbs are presented in suf® c ient quantity early in training.

E arly presentation of this less-productive pre® x allows it to compete more effectively

with the other reversive marking options. T he cost of this early presentation is that the

network overgeneralize s dis- to many zero and un- verbs. In agreement with

S imulation 1 , the results provide evidence for the role of the cryptotype in the

acquisition of reversive pre® xes. A comparison of S imulations 1 and 2 shows that

overgeneralizat ion depends on whether or not the network has developed a semantic

representation of the cryptotype. F or example, when the dis- verbs enter training after

the development of a cryptotypic representation, the network overgeneralize s ( for

example, * una ssemble and * unmount) , as in S imulation 1 ; if they enter training before

the cryptotype is recognized, then no overgeneralization occurs, as in S imulation 2 .

However, in S imulation 2 , the network was still unable to recover from errors, once it

overgeneralize s according to the cryptotype. T herefore, we deal further with the

recovery problem in the next simulation.
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T a ble III. Vocabulary structure across

pre® xation patterns in S imulation 3

T otal Zero un-

20 11 9

40 21 19

60 32 28

80 42 38

1 00 49 51

1 20 49 71

1 41 49 92

4. S im ula tion 3

In the ® rst two simulations, the network was unable to recover from

overgeneralizations, despite repeated training. In this simulation, to study the

effects of learning and recovery more directly, we removed the dis- verbs from

training and exposed the network only to the un- and the zero verbs.

4.1. Method

T he input data, the network architecture, the task and procedure, and the data

analysis methods in S imulation 3 were the same as in S imulation 2 . T he only

difference was that the dis- verbs were removed from training in this simulation.

T able III presents the vocabulary increase process in S imulation 3 .

4.2. Results a nd Discussion

F igures 4 (a) and (b) present the percentages of the verbs that have been learned

correctly for the un- and the zero verbs, respectively. C omparing these data with

those from S imulation 2 , we can see that the error rates for the zero verbs and for

the un- verbs were signi® cantly reduced. However, as in S imulations 1 and 2 , the

network continued to overgeneralize un- to zero verbs, based on the semantic

cryptotype.

In this simulation, we found that the network could recover from

overgeneralizations with a number of words, including * unbend, * unbury, * unhang

and * unsqueez e, all of which appeared in B owerman (1982). After the initial errors,

these verbs began to resist un- pre® xation as training continued. Incidentally, all

the words that showed recovery were those that had entered the learning process

at a very early stage. Apparently, the additional experience involved early on in

coding the semantics of these verbs in distinction with other verbs gave them a

greater distinctiveness in the network, which served to facilitate resistance to

overgeneralization. A cluster analysis of the network’s representation at the hidden

layer revealed that, fairly early in training, the network had identi ® ed a structure

of the un- cryptotype. F igure 5 presents the cluster tree of the network’s

representation at the 24-word boundary (bury entered learning as the 13th word,

bend as the 15th word, ha ng as the 20th word and squeeze as the 24th word). As in

F igure 2 , the capitalized marker after each verb in F igure 5 is a mnemonic for the

pre® xation pattern of each verb; the actual input consists of the base verbs without

any pre® xes.
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F igur e 4. Per cent of pre® xation as a function of vocabulary increase for (a) un-

verbs and (b) zero verbs in S imulation 3 .

As shown in F igure 5 , the network developed separate representations for the

un- and zero verbs at this point, although some zero verbs were miscategorized into

the un- category (the overgeneralize d forms) . H owever, two factors make the

representation incomplete and unstable. F irst, the category members in the zero

clusters did not form clear semantic coherence; for example, see and turn were

grouped together, but come and go were not. S econd, although some verbs in the

un- cluster were associated with the `attaching’ meaning (such as link , ta ngle and

plug) , others were not (such as scramble, settle and do) . C ompared with the

representation in F igure 2 , the network’s representation of the un- cryptotype is

only partial at this point. As a result, the overgeneralizations with zero verbs were

based on the network’s partial rather than stable and clear structure of the

cryptotype (unlike the situation in S imulation 1 , as revealed in F igure 2) . G iven

such a structure, the network had a chance to recover from the overgeneralization

errors. In contrast , in the previous simulations, the network did not show any signs
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F igur e 5. Hierarchical cluster tree of the network’s representation of the semantic

structure of verbs at the 24-word boundary in S imulation 3 .

of recovery, probably because it had settled on a stable structure by the time it

started to overgeneralize.

In this simulation, there were also many words that could not recover from

overgeneralizations, including * unclose, * undeta ch , * un® ll, * unpress, * unstrip and

* untighten, all of which ® t the cryptotype. Interestingly, these words were learned at

a later stage, when the network already settled on a ® rm semantic structure for the

cryptotype, as revealed by analyses of the network’s hidden-unit activation patterns.

T he discrepancy between errors that permit recovery and those that do not

provides some evidence on the time course of the network’ s learning ability. E arly

in learning, the network has not built a complete or stable representation for the

semantic cryptotype associated with un-. Overgeneralizati on errors at this stage

have a chance to be corrected, because the network is still ¯ exible or `plastic ’

enough to adjust its error space in large sweeps. L ater on, as the network learns

more words, and as it settles on some stable semantic representations on which

overgeneralizations are based, the network becomes increasingly in¯ exible and

unable to make radical adjustments in the weight space. In other words, the
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network becomes entrenched in a state of weight con® gurations that makes further

changes impossible (see E lman (1993 , pp. 91 ± 93 ) for a detailed discussion of how

the learning algorithm determines weight adjustment over time) . T hus, `plasticity’

is a property characteristic of early stages of learning, as in young children , while

`stability’ is characteristic of later stages of learning.

T o verify our analysis of the early versus late differences in the network’s ability

to recover, we retrained the same network with the following changes in training

schedule. We exchanged the verbs that could recover from errors with the verbs

that could not, in the order in which they entered the training process. S peci® cally,

the verbs bend, bury, ha ng and squeeze that occurred early in the original training

were moved to a later stage of learning in the new training, whereas verbs such as

close, deta ch , ® ll, press, strip and tighten were now moved to the early stage. T he

result from this new round of training is informative. All the verbs that could not

recover in the original training could now recover from the overgeneralizations after

their initial errors. However, the verbs that recovered from overgeneralizations in

the original training could no longer recover in this new training, because the

overgeneralization errors were now based on a stable structure of the semantic

cryptotype that the network built at the later stage of learning.

T o summarize, the data from S imulation 3 provide converging evidence on the

role of semantic cryptotypes in overgeneralization and recovery during the network’s

acquisition of the un- reversive pre® x. T he results are consistent with analyses of

patterns of network learning in the domains of syntactic structures (E lman, 1993)

and past-tense acquisition (M archman, 1993). T hose analyses , together with our

results, paint a general picture of the early plasticity and late stability both in

network’s and in children ’s learning. Our results provide further evidence on the role

of plasticity and stability in overgeneralization and recovery in language acquisition.

5. Gener al Disc ussion

T his study was designed to evaluate the detailed semantic basis for the

overgeneralization and recovery processes in language acquisition. We wanted to

relate these processes to semantic support within cryptotypes and competition

between alternative devices. At the same time, we wanted to demonstrate ways in

which connectionist models can bene ® t from a more complete semantic grounding.

T o achieve these goals, we built a network to map semantic input features to three

pre® xation patterns in an incremental learning schedule. We conducted three sets

of simulations to examine the role of the semantic cryptotype associated with the

use of reversive pre® xes.

In S imulation 1 , the network constructs a representation of a cryptotype for

verbs that take un- , and it then uses this representation as a basis for productive

and innovative use of the reversive pre® xes. In S imulation 2 , the network develops

structured representations of the semantic cryptotype that underlies both un- and

dis-. R esults from these two simulations suggest that the role of the cryptotype is

to induce overgeneralizations to verbs that fall within the realm of the cryptotype,

rather than being to reduce overgeneralizations outside the cryptotype. S imulation

2 also highlight s the role of lexical competition in morphological acquisition. It

shows that direct competition between similar inputs (such as verbs that share the

semantic cryptotype) leads to learning dif® culties for dissimilar output ( i.e. dis-

versus un-) . In S imulation 3 , the network exhibits a higher level of early plasticity

that promotes recovery from overgeneralization errors. T ogether, these results give
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us a picture of the learning dynamics of a network system that extracts semantic

information, develops cryptotypic semantic representations, overgeneralize s

competing morphological devices and eventually recovers from errors (see also L i,

1993) . T hese results help us to understand how and why learners overgeneralize

and recover from overgeneralizations.

Our analyses also provide a more precise account of how Whorf ’ s cryptotype

emerges from distributed representations, and how it affects overgeneralization and

recovery. Whorf described the meaning of the cryptotype as `subtle’ and

`intangible’ , but he also noted that native speakers control it intuitively. Whorf did

not explain how this could be true. In our view, the reason for the intangibility of the

cryptotype is that the semantic features that unite different members of a cryptotype

are represented in a complex distributed fashion (such as features overlap across

categories) , such that they are not easily subject to explicit symbolic analysis, but are

accessible to native intuition. T herefore, the meaning of the cryptotypic members

itself is not intangible, but the semantic relationships between the members are

intangible, because they are inaccessible to symbolic analysis . G ender and classi® er

systems are further illustrations of the intangibility of such distributed patterns

(L akoff, 1987 ; M acWhinney, 1989 ; K oÈ pcke & Zubin, 1984) .

T he meaning of a cryptotype constitutes a complex semantic network in which

verbs differ from one another with respect to the following: how many features each

verb contains; how strongly each feature is represented in the verb; and how

strongly features within verbs are related to one another (all true with the input to

our network). It is the relationships between the features that give rise to

cryptotypes. F or the child, learning reversive pre® xes is not the learning of a

symbolic rule for the use of a pre® x with a class of verbs, but the learning of the

connection strengths that hold between a particular pre® x and a complex

distributed set of semantic features across verbs. T he learning system groups

together those verbs that share the largest number of features and take the same

pre® xation patterns. Over time, the verbs gradually form clustered structures, with

respect to both meanings and pre® xation patterns.

R esults from the present study also shed light on the role of the plasticity and

stability of network learning in the network’s ability to recover from

overgeneralizations. If the network develops a ® rm structure of the cryptotype by

the time it overgeneralizes, then it has little chance to recover from the errors.

H owever, if the overgeneralizations are only based on partial or unstable structures

that are present during a period when the weight space is not fully committed, then

recovery is possible.

We should mention at least three factors that may have led to an

underestimation of recovery capacities in our simulations.

(1 ) Our model has included only semantic representations of verbs. A model that

also codes for phonological differences between verbs would probably aid the

system’s recovery from overgeneraliza tions (such as the use of phonological

distinctive features in M acWhinney and L einbach (1991)) .

(2 ) It is possible that a richer, more distinctive semantic coding for our verbs

would further aid in helping individual verbs resist overgeneraliza tion and

recover from overgeneralization errors.

(3 ) T here is good reason to believe (M acWhinney, 1996b) that older language

learners have access to a variety of secondary rehearsal and organizational but

not our network systems that they can use to retune lower-level connections.
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E ach of these additional forces can be explored in further connectionist models

and we have already begun to follow up each of these issues in work currently in

progress (L i & M acWhinney, 1996). E ventually, consideration of these additional

factorsÐ and possibly othersÐ will allow us to understand better the detailed

mechanism of the processes of overgeneralization, recovery and competition across

a wider variety of semantic ® elds.
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Notes

1 . T he verbal pre® x un- should be carefully distinguished from un- with adjectives such as unsure: the

former indicates reversal of action, while the latter roughly means `not’ and can attach to almost all

adjectives that denote quality or state.

2 . T here were a few exceptions to this description. F or example, wind was grouped with hold, hook and

mount, and go was grouped with rea ch , cha rge and a llow ( rather than wa lk and run) . T hese exceptions

could result from the incompleteness or instability of the semantic structure that the network

develops at an early stage (see more discussion on the instability issue later) .
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Appendix A: Over gener aliza tion E r r or s of u n - P r oduc ed by C hildren

(1 ) D , 2 ;8 M : D id someone undo my belt? [after D pulled her belt undone]

D : N o, no, I unpulled it because it wasn’ t tied yet.

(2 ) D , 2 ;9 D : It’ s un¯ owing. [= emptying; opening plug in bidet and letting

water out]

(3 ) D , 2 ;9 D : N o, no I was tighting my badge. I tighted my badge, and you

should untight it. [= loosen; D wanted to take a PanAm

badge off his shirt]

(4 ) D , 2 ;10 D : T hey’ve disappeared. [having hidden his thumbs by closing

his ® sts on them]

M : C an you make them appear again?

D : I can’ t make it undisappea r. [= reappear]

(5 ) D , 3 ;0 D : Oh your hair is unpinning. [as a hairpin fell out of M ’s hair]

(6 ) D , 3 ;1 D : F irst I unbuild it, okay? [needing to put his blocks in a bag to

take upstairs]

(7 ) D , 3 ;4 D : I don’ t know what’ s in my stocking. I ’ ll have to unhang it.

[= take down; feeling his C hristmas stocking]

(8 ) D , 3 ;5 D : S how me how you unca tch your necklace. [= undo the catch]

(9 ) D , 3 ;10 D : I ’m unpyjama -ing. [= taking off; having put pyjamas over his

clothes, and now proceeding to take them off]

(10 ) D , 4 ;3 D : H ere’ s D uncan’s airplane. D ’you want me to unblow it?

[= de¯ ate]

(11 ) D , 4 ;3 D : . . . he unstrings the worms every day and throws them on the

® re. [= taking off the string; telling a story]

(12 ) D , 4 ;5 D : M aybe it’ s for unlighting the ¯ ame . . . a faster way.

[= extinguishing; speculating about a small knob on the

stove]

(13 ) D , 4 ;6 D : . . . but the two big kids didn’ t know that the little one was

unk nitting the wool. [= undoing the knitting]

(14 ) C , 3 ;9 C : T his is pooey that’ s coming out of here. [in tub, showing cup

with water spouting out of the holes] And that’ s how to make

it uncome. [blocking holes with hand]

(15 ) C , 4 ;5 M : I ’ve been using them for straighten ing the wire. [C has asked

M why pliers are on the table]

C : And unstra ighting it? [= unbending]

(16 ) C , 4 ;7 C : I hate you! And I’ ll never unha te you or nothing!

M : Y ou’ ll never unhate me?

C : I ’ ll never like you.

(17 ) C , 5 ;1 M : S eems like one of these has been shortened, somehow. [M

working on strap of C ’s backpack]

C : T hen unshorten it. [= lengthen]

(18 ) C , 5 ;1 C : H e tippitoed to the graveyard and unburied her. [telling ghost

story]

(19 ) C , 5 ;1 C : I unbended this with stepping on it. [= straightened; after

stepping on a tiny plastic three-dimensional triangular

roadsign , squashing the angles out of it]

(20 ) C , 6 ;0 C : Wait until that unfuzzes. [watching freshly poured, foamy

coca cola]
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(21 ) C , 6 ,11 C : H ow do you make it sprinkle? [C trying to ® gure out how

kitchen faucet works] [after getting it to sprinkle] How do

you make it unsprink le?

(22 ) C , 7 ;11 C : I ’m gonna unha ng it. [taking stocking down from ® replace]

(23 ) C , 4 ;9 C : Y ou can take it una pa rt and put it back together. [C

manipulating a take-apart toy. Here un- has migrated to the

wrong part of speech]

(24 ) C , 4 ;11 C : Will you unopen this? [wants F to take lid off styrofoam

cooler]

(25 ) C , 5 ;6 C : . . . unpa tting it down. [as C pats ball of ground meat into

hamburger patty]

(26 ) E , 3 ;2 E : Why did you unclothes her? [M has taken C ’s clothes off]

M : Why did I what?

E : Why did you unclothes her?

M : Why did I what?

E : U m . . . why did you take her clothes off?

(27 ) E , 3 ;2 E : I can’ t untight. [= loosen; E struggling with tight overall

strap]

(28 ) E , 3 ;10 M : I have to capture you. [grabbing E in game]

E : Uncapture me! [trying to pull loose]

(29 ) E , 3 ;11 E : H ow do you unsqueeze it? [C coming to M with clip earring

hanging from ear]

M : What?

E : H ow do you unget it . . . undone?

(30 ) E , 4 ;7 E : I know how you take these apart. Unsplit them and put ’em

on. [holding up chain of glued paper strips]

M : H ow do you unsplit them?

E : L ike this [pulling a link apart]

(31 ) E , 4 ;7 E : Will you unpeel the banana? [giving banana to M ]

(32) E , 4 ;11 E : . . . and then unpress it out. [showing M how to get

playdough out of a mould]

M : H ow do you unpress it out?

E : Y ou just take it out.

(33 ) E , 4 ;7 E : Y ou slip it across . . . and you unslip it like this [showing M

how to work clasp on coin purse; as E says `slip’ , she moves

the two metal parts past each other so that purse closes; as

she says `unslip’ , she opens it]

N ote: D , C and E are the initials of three children’ s names, and M denotes mother.

Ages are given in `years; months’ . T he results are taken from B owerman (1982 ,

1988) and C lark et a l. (1995) (reproduced with permission of the authors) .

Appendix B : Ver bs U sed in the Input C or pus

un- Verbs

arm cork lace screw

bandage cover latch settle

bind crumple leash sheathe

bolt curl link snap

28 P. L i & B . M a cW hinney



braid delete load strap

buckle do lock tangle

button dress mask tie

chain fasten pack twist

clasp fold plug veil

clench hinge ravel wind

clog hitch reel wrap

coil hook roll zip

scramble

dis- Verbs

af® liate connect infect place

appear continue integrate prove

arrange embark locate trust

assemble engage mantle unite

charge entangle mount

Zero Verbs

affect ® nd move slip

agree free obey solve

allow freeze open speak

approve get pat spill

ask give pay split

become go peel sprinkle

begin grip plant squeeze

believe grow play stand

bend hang pose start

break hate possess stop

bring hear press straighten

bury help pull strip

call hold put tack

capture invite reach take

clear keep release talk

close learn remove tell

come lift reverse tighten

con® rm like run turn

deprive live say use

detach look see wait

embarrass loosen separate walk

expel make show work

® ll melt sit write
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Appendix C : Sem antic F eatur es and F ea ture Vec tor s a s

R epr esenta tions of Ver bs

connect link turn

S emantic features (dis-) (un-) (zero)

(1 ) M ental activity 0 .1 0 .1 0 .0

(2 ) M anipulative action 0 .7 0 .9 0 .6

(3 ) C ircular movement 0 .0 0 .0 0 .6

(4 ) C hange of location 0 .1 0 .1 0 .5

(5 ) C hange of state 0 .3 0 .3 0 .1

(6 ) R esultative 0 .3 0 .4 0 .3

(7 ) A affects B 0 .2 0 .3 0 .5

(8 ) A touches B 0 .9 0 .9 0 .1

(9 ) A distorts B 0 .1 0 .0 0 .3

(10 ) A contains B 0 .0 0 .1 0 .1

(11 ) A hinders B 0 .1 0 .2 0 .1

(12 ) A obscures B 0 .0 0 .0 0 .0

(13 ) A surrounds B 0 .2 0 .3 0 .1

(14 ) A tightly ® ts into B 0 .6 0 .7 0 .0

(15 ) A is a salient part of B 0 .5 0 .7 0 .1

(16 ) A and B are separable 0 .6 0 .4 0 .1

(17 ) A and B are connectable 0 .7 0 .8 0 .0

(18 ) A and B are interrelated 0 .5 0 .6 0 .0

(19 ) A and B are in orderly structure 0 .3 0 .5 0 .0

(20 ) A and B form a collection 0 .6 0 .5 0 .0

N ote: In the semantic judgement experiment, subjects were given more detailed descriptions of

these features in sentence format.
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