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Bilingual lexical interactions in an unsupervised neural network model

Xiaowei Zhaoa* and Ping Lib

aDepartment of Psychology, Colgate University, Hamilton, NY, USA; bDepartment of
Psychology, Pennnsylvania State University, University Park, PA, USA

(Received 4 February 2009; final version received 24 December 2009)

In this paper we present an unsupervised neural network model of bilingual lexical
development and interaction. We focus on how the representational structures of
the bilingual lexicons can emerge, develop, and interact with each other as a
function of the learning history. The results show that: (1) distinct representations
for the two lexicons can develop in our network when the two languages are
learned simultaneously; (2) the representational structure is highly dependent on
the onset time of the second language (L2) learning if the two languages
are learned sequentially; and (3) L2 representation becomes parasitic on the
representation of the first language when the learning of L2 occurs late. The results
suggest a dynamic developmental picture for bilingual lexical acquisition: the
acquisition of two languages entails strong competition in a highly interactive
context and involves limited plasticity as a function of the timing of L2 learning.

Keywords: bilingual interaction; lexical development; neural network; DevLex

Introduction

An issue of enduring interest in bilingualism research has been how the two

linguistic systems are represented, developed, and influenced by each other in the

bilingual’s mind. Despite significant progress in the field of bilingualism, the

underlying computational mechanisms of early bilingual lexical acquisition are still

poorly understood. In the empirical literature, there has been intense debate on

whether bilingual representation takes the form of a single, shared lexical storage or

a separate, distinct storage for the mental lexicon (see Dong, Gui, and

MacWhinney 2005; French and Jacquet 2004; Kroll and Tokowicz 2005, for recent

reviews). For example, in the study of early childhood bilingualism, some

investigators have argued for the unitary language system hypothesis (e.g. Volterra

and Taeschner 1978), according to which bilingual children who acquire two

languages simultaneously often start with a single fusion system that combines the

representations of both languages. This unitary representational system gradually

differentiates into two systems that handle the two languages separately when the

bilingual child grows older. In contrast, other researchers have argued for the dual

language system hypothesis (Genesee 1989), according to which two separate

linguistic systems are developed simultaneously in the child from the onset of their

language acquisition. A new perspective to this debate is to ask, not whether there

is a single or a dual system, but, rather, to what extent differences or separation
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exist and at what level they do so (such as the meaning or conceptual level vs. the

phonological or morphosyntactic level; see Pavlenko 2009).

The issue of bilingual representation has recently been further complicated by

conflicting neuroimaging data with regard to distinct or common neural substrates in

bilingual language processing (see a review in Li 2009). The evidence so far seems to

point to common neural systems for the processing of both first language (L1) and

second language (L2), but the picture is muddied by the lack of careful consideration

of the bilingual’s learning history, the age effect, the proficiency and dominance of

L1 vs. L2, and similarity distances between the bilingual’s two languages. Given this

situation, it is important to recognize that a host of variables must be taken into

consideration in dealing with bilingual representation and the interaction between

L1 and L2, such as bilingual proficiency, learning history, modality (comprehension

vs. production), and word types (cognates vs. noncognates, abstract vs. concrete

words; Van Hell and de Groot 1998).
Computational models offer particular advantages in dealing with complex

interactions between variables by systematically bringing target variables under

experimental control while holding other variables constant (see a recent review of

computational cognitive models in McClelland 2009). Although the power of

experimental research also lies in systematic control of variables, in natural language

learning situations, especially in the bilingual case, it is often difficult to directly

manipulate the learning environment in parametric ways (see a metaphor by

Bialystok 2001 comparing bilingualism with the smorgasbord of food serving). In

this paper, we plan to demonstrate the facility and utility of neural network models

(or ‘connectionist models’) in the study of bilingualism.

A neural network is a computational model made of information processing units

(neurons) that are connected in a network. The basic tenet of neural networks is that

the brain works by co-ordinating the activation of large groups of neurons in

response to particular cognitive or perceptual tasks, and that the activation is

crucially determined by the specific connections that hold between the neurons. The
connections can take on different degrees of strength (weights), while learning can

change the strengths or eliminate the connections altogether depending on the task.

In addition, a large number of neurons as information processing units may be

activated in parallel to handle a specific problem. Neural network models argue for a

high degree of interactivity between various levels of information processing, in

contrast to classical cognitive theories that assume modularized, often serial, and

‘informationally encapsulated’ processes (see Fodor 1983, for the latter). Thus,

neural network theories assume that knowledge representation and acquisition is

distributed, parallel, and interactive in nature. To illustrate, neural networks learn

through the adaptation of weights, the strengths of connections that hold between

multiple and parallel working units, which serve as a simplification of the synaptic

connections among real neurons.1 There have been many algorithms developed for

adjusting the weights to an optimal set of configurations, which may lead to the

appropriate activation patterns of units that represent new knowledge (Haykin

1999). In the views of neural network models, linguistic representations can be best

understood as properties that emerge out of learning (i.e. ‘emergent properties’)

rather than as built in a priori; they emerge owing to the interaction of the learning
system with the linguistic environment (Elman et al. 1996).

Researchers in neural network modeling have for quite some time been concerned

with issues in language development and language processing. Work in the
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monolingual context has shown that neural network models are ideally suited for

identifying mechanisms underlying phenomena in early lexical acquisition, including

the U-shape learning of the English past tense (Plunkett and Marchman 1991),

acquisition of lexical categories (Li, Farkas, and MacWhinney 2004), the vocabulary

spurt (Li, Zhao, and MacWhinney 2007; Regier 2005), and acquisition of aspect

(Zhao and Li 2009a). Unfortunately, the gap between neural networks and

bilingualism is still wide open: to date, there have been only a handful of neural

network models that are designed specifically to account for bilingual language

processing and representation (see reviews in French and Jacquet 2004; Li and

Farkas 2002; Thomas and van Heuven 2005). Furthermore, no neural network

model has been devoted to capturing the impact of developmental time on bilingual

children’s lexical representations and the interaction between them. For example,

popular existing models in bilingual studies have been developed based on the

famous Interactive Activation (IA) network of McClelland and Rumelhart (1981),

including the Bilingual Interactive Activation (BIA) model (Dijkstra and van

Heuven 1998), BIA� model (Dijkstra and van Heuven 2002), and the Bilingual
Model of Lexical Access (BIMOLA, Grosjean 2008). These models can be said to be

‘permanent’ or ‘stationary’ models because mechanisms of learning and adaptation

for representation are missing in these models. Specifically, the connections and their

weights are fixed and manually coded to capture proficient bilingual adults’ language

processing, for example, in visual or spoken word recognition. Due to the lack of

learning, these models have difficulties simulating the developmental dynamics of

bilinguals’ lexical representations and interactions.

Finally, many previous neural network models rely on the use of artificially

generated input representations, rather than training sets derived from actual speech

input to the learners. Moreover, the size of the bilingual lexicon that the models can

handle is often very small. The use of synthetic or highly simplified lexicons provides

certain modeling conveniences in terms of analysis of the linkage between input and

output. However, the highly idealized models often do not directly speak to

developmental and interactive patterns in realistic learning situations.
Our current study takes these gaps as starting points for building computational

models of developmental bilingualism, in particular, by simulating bilingual lexical

representations and interactions with an unsupervised neural network model. The

backbone of our simulation is an unsupervised neural network model, DevLex-II.

This model and its predecessor, DevLex, have been developed to capture interactive

developmental dynamics in language acquisition. The models rely on simple but

powerful computational principles of unsupervised and Hebbian learning. We have

applied them successfully to account for a variety of empirical phenomena in early

monolingual lexical development (see Li, Farkas, and MacWhinney 2004; Li, Zhao,

and MacWhinney 2007; Zhao and Li 2009a).2 In this study we implement a variant

of the DevLex-II model for the bilingual context and focus on how the representa-

tional structure of the bilingual lexicon can develop and change as a function of the

learning history. In particular, we manipulate the onset time of lexical learning of the

L2, in three scenarios: simultaneous � onset time of L2 co-occurs with that of the L1;

early learning � onset time of L2 is slightly delayed relative to that of L1; and late

learning � onset time of L2 lags significantly behind that of L1. We hypothesize that

the representational structures for the two lexicons in our model would differ as a
function of the learning history defined by L2 onset time. In addition, we hope to

show how in each scenario the two developing lexicons compete and interact with
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each other, by analyzing the output of the model for comprehension and production

errors and by examining the distances between the lexical representations of

translation equivalents in the model’s behavior.

Below, we first provide details on the construction of the model, followed by a

discussion of the behavioral phenomena we wish to capture and explain. The success

of the model and what it reveals are then explored.

The model

Self-organizing feature map (SOM): an unsupervised neural network

Unlike many popular neural network models of language that have been previously

used (see review in Elman et al. 1996), our model relies on unsupervised learning

algorithms that require no explicit ‘teachers’ to provide constant error corrections to

the network. The model presented in this study is a variant of the so-called self-

organizing feature map (SOM; Kohonen 2001).
To construct a SOM, a group of nodes (or neurons) are arranged on a two-

dimensional lattice (i.e. a topographic map) for the organization of input

representations, where each node on the map has input connections to receive

external stimulus patterns. On the map, a node k has a vector ~mk associated with it to

represent the weights of the input connections to it. At each training step of SOM, an

external input pattern (e.g. the phonological or semantic representation of a word in

our study) is randomly chosen and presented to all the nodes on the map. This

activates many nodes, according to how similar, by chance, the input pattern is to the
weight vectors of the nodes; and the node that has the highest activation is declared

the ‘winner’ (the Best Matching Unit, BMU). Once a node becomes active in

response to a given input, the weight vectors of that node and its neighboring nodes

(the neighbors) are adjusted, so that they become more similar to the input, and the

nodes will respond to the same or similar inputs more strongly the next time. In this

way, every time an input is presented, an area of nodes will become activated on

the map (the ‘activity bubbles’) and the maximally active nodes are taken to represent

the input. Initially activation occurs in large areas of the map, that is, large
neighborhoods, but gradually learning becomes focused and the size of the

neighborhood reduces. This process continues until all the inputs have found

some maximally responding nodes as their BMUs. As a result of this self-organizing

process, the map falls into a topography-preserving state, which means that the

inputs with similar features will end up activating nodes in nearby regions, yielding

meaningful activity bubbles that can be visualized on the map. This property is

consistent with the observation of topographic maps in the sensory and motor areas

in our brain, given that the signals from adjacent body regions are often projected to
and processed by neighboring cortical areas (Spitzer 1999). For our purposes, this

topography-preserving property allows us to model the emergence of semantic

categories as a gradual process of lexical learning.

A sketch of the model

DevLex-II is a multi-layer, unsupervised, SOM-based neural network model, as

diagrammatically depicted in Figure 1 (see Li, Zhao, and MacWhinney 2007, for
details). It includes three basic levels for the representation and organization of
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linguistic information: phonological content, semantic content, and the output

sequence of the lexicon. The core of the model is a SOM that handles lexical�
semantic representation. This SOM is connected to two other SOMs, one for input

(auditory) phonology, and another for articulatory sequences of output phonology.

Upon training of the network, the meaning representation, input phonology, and

output phonemic sequence of a word are presented to and processed by the network.

This process can be analogous to a child’s analysis of a word’s semantic,

phonological, and phonemic information upon hearing a word.

On the semantic and phonological levels, the network forms representational

patterns of activation according to the standard SOM algorithm as discussed above.

Here, given a stimulus x (the phonological or semantic information of a word), a

winner (i.e. BMU) on the corresponding SOM is found. After that, the weights of the

nodes surrounding the winner in the neighborhood are updated. Unlike the SOMBIP

model (Li and Farkas 2002), DevLex-II has a separate output sequence level. This

level is slightly different from the other two levels where standard SOM is used. The

addition of this level in the model is inspired by models of word learning based on

temporal sequence acquisition. It is designed to simulate the challenge that language

learners face when they need to develop better articulatory control of the phonemic

Figure 1. The architecture of the DevLex-II model. Each of the three self-organizing maps
(SOM) takes input from the lexicon and organizes phonology, semantics, and phonemic
sequence information of the vocabulary, respectively. The number of nodes in each map
is indicated in parentheses. The dimension of the input vector for each map is indicated by
‘d � ’ in parentheses next to the input representation symbols. The maps are connected via
associative links updated by Hebbian learning.
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sequences of words. Here, the activation pattern corresponding to the phonemic

sequence information of a word is formed according to the algorithms of SARDNET

(James and Miikkulainen 1995), a type of temporal or sequential SOM network (see

Li, Zhao, and MacWhinney 2007, for further technical descriptions).

To better simulate language behaviors, previous researchers have linked together

multiple SOMs to handle different linguistic aspects via cross-layer connections (see

Li, Farkas, and MacWhinney 2004; Miikkulainen 1997). In DevLex-II, concurrent

with the training of the three maps, the associative connections between maps are
trained via Hebbian rule, a neurally inspired and biologically plausible mechanism of

associative learning and memory (Cooper 2005), with a constant learning rate (see

technical details in Li, Zhao, and MacWhinney 2007). The central idea here is that

the weights of the associative connections between the frequently and concurrently

activated nodes on two maps will become increasingly strong with training. To

control the maximum weight value such a cross-map connection could have, we

implemented a normalization process for the associative weights. This process allows

for the gradual decrement of the weights of some associative links that are
accidentally established at the early, and usually disorderly, stage of training (when

the size of the ‘activity bubble’ is still large). As training progresses, the nodes

connected by these links do not co-activate as frequently as before, therefore their

weights gradually decay to zero. Meanwhile, there are links whose weights

increasingly approach the maximum value (�1) because they connect those

BMUs that consistently co-activate with each other at the late stage of training

(when the size of the ‘activity bubble’ becomes small). After the cross-map

connections are stabilized, the activation of a word form can evoke the activation
of a word meaning via form-to-meaning links (to model word comprehension). If the

activated unit on the semantic map is the BMU of the correct word meaning, we say

that our network correctly comprehends this word; otherwise the network makes

a comprehension error. Similarly, the activation of a word meaning can trigger the

activation of an output sequence via meaning-to-sequence links (to model word

production). If the activated units on the phonemic map are the BMUs of the

phonemes making up the word in the correct order, we determine that our network

correctly produces this word; otherwise the network makes an error in production.

Plasticity and stability in the model

To realistically simulate bilingual lexical development (especially L1 and L2

interaction) we must consider a fundamental problem called ‘catastrophic

interference’ (see French 1999; Li, Farkas, and MacWhinney 2004). For example,

if we train a network to acquire an L1 lexicon with 500 words and then train it on

another 500 words in L2, in many traditional networks, the addition of L2 words
may disrupt the network’s knowledge of L1. In other words, the network will lose its

representation of L1 words because of learning new words, which of course, is unlike

human learning. This problem has been a ‘plasticity�stability’ dilemma in neural

networks. Keeping the network’s plasticity for new words often causes it to lose its

stability for old knowledge; conversely, a network that is too stable often cannot

adapt itself very well to the new learning task. To resolve this problem for our

bilingual study, we introduced two new features into DevLex-II.

The first is a self-adjustable neighborhood function. For the standard algorithm
of SOM, the radius of the neighborhood usually decreases according to a fixed
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training timetable. This type of development in the network, though practically

useful, is subject to the criticisms that: (1) learning is tied directly (and only) to time

(amount) of training, and is rather independent of the input-driven self-organizing

process, and (2) the network often loses its plasticity for new inputs when the

neighborhood radius becomes very small. In DevLex-II, we attempt to forestall

these criticisms by using a learning process in which the neighborhood size is not

totally locked with time, but is adjusted according to the network’s learning

outcome (experience). In particular, neighborhood function depends on the
network’s error level on each layer averaged across all the input patterns. Here, a

‘quantization error’ of an input pattern (as named in Kohonen 2001) is defined as

the Euclidean distances (i.e. how similar) of the input pattern to the input weight

vector of its BMU.3 A second way in which we attempt to solve the plasticity�
stability problem is to manage the training process as follows: for the input

phonology map and the semantic map, during each training epoch, once a unit is

activated as a BMU, it will become ineligible to respond to other inputs in the

current training epoch. In this way, the old words are kept untouched in the
training; the new words can be represented by novel units (new resources) on

the maps. A similar procedure is also used for the output sequence map on the

word level, where the same phoneme in different locations of a word will be mapped

to different (but adjacent) nodes on the map. This mechanism resembles a process

in which new neurons are recruited for novel inputs as computational resources

become scarce (see Li, Farkas, and MacWhinney 2004, for an algorithm in new

node recruitment). The use of a different but adjacent unit for new input is also

empirically plausible: psycholinguistic research suggests that when young children
encounter a novel word they tend to map it to a different category or meaning for

which the child has not yet acquired a name (see Markman 1984; Mervis and

Bertrand 1994).

Bilingual lexicons and input representations

To control for a host of extraneous variables in the study of bilingual lexicons, we

used as our basis vocabulary from the CDI (Dale and Fenson 1996) for two
languages, English and Chinese. The English lexicon was identical to that of Li,

Farkas, and MacWhinney (2004). The Chinese lexicon was derived from the Chinese

version of the CDI (Tardif, Gelman, and Xu 1999; Wu 1997). Each lexicon included

500 words chosen from the Toddler list of the corresponding CDI. The words were

extracted roughly according to their order of acquisition by the toddlers, excluding

homographs, word phrases, game words, words about time, words about place, and

onomatopoeias.4 The English lexicon included 286 nouns, 98 verbs, 51 adjectives,

and 65 words in other categories; and the Chinese lexicon included 242 nouns,
145 verbs, 47 adjectives, and 66 words in other categories.

During the training of the model, the linguistics information was explicitly coded

in the input representations. First, the sound pattern and phonemic makeup of a

word were coded as the basic phonological input to the model. Second, the

articulatory features of the 55 phonemes from the two languages (36 in Chinese;

38 in English) were coded and represented on the output sequence map. Third, the

semantic information of words included two parts: (1) the co-occurrence probabil-

ities of words in the discourse of the two languages, and (2) the ‘semantics’ of words,
in the guise of word association, synonymy, and hyponymy, as represented in a
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normal thesaurus. The purpose of such a combination was to enhance the accuracy

of our lexical representation (see Li, Farkas, and MacWhinney 2004, for rationale).

For the phonological input, we aligned the basic phonological patterns of English

and Chinese words into a trisyllabic template with 18 phonemic slots according to

PatPho, a generic phonological pattern generator for neural networks (Li

and MacWhinney 2002; Zhao and Li 2009b). The template was CCCVVCCCVV

CCCVVCCC, with Cs representing consonants and Vs representing vowels. Each

phonemic slot consisted of three units which roughly represented the articulatory
features of a phoneme (such a phonemic representation was also adopted for the

output sequence map). In addition, a separate group of nine units was used to

represent lexical tones in Chinese, and the values of these units were left empty for

English.

Technically, the semantic information was entered into our model as a

combination of two parts. The first set was computed using the parental input

from the CHILDES corpus (MacWhinney 2000). We used WCD, a special recurrent

neural network that learns the lexical co-occurrence constraints of words, to read a
stream of input sentences one word at a time, and learn the adjacent transitional

probabilities between words, which it represents as a matrix of weights (see Li,

Farkas, and MacWhinney 2004, for details). WCD computes two vectors that

correspond to the left and the right context, respectively; it then transforms these

probabilities into normalized vector representations for word meanings.

The second set of semantic representations was generated from computational

thesauruses available for each of the two languages. For Chinese, it was derived from

a Chinese computational database called HowNet (http://www.keenage.com).
Through a program which calculated the similarity of Chinese words in the database

(Liu and Li 2002), we derived a matrix that represents the similarity of all the

500 Chinese words. For English, as in Li, Farkas, and MacWhinney (2004), we used

a feature generation system (Harm 2002) to derive semantic features from the

WordNet database (Miller 1990), and the similarity of the 500 English words was

further calculated according to these features.

A random mapping (Kohonen 2001) method was further used to reduce the size

of each set of the semantic representations to a lower dimension (from d�500 to
d�100), and the two sets were then combined together to form each word’s semantic

vector. Our method allows for a lexical representation with both semantic and

syntactic information, which has the ability to introduce certain language-specific

information into our representation.

Simulation scenarios

Our simulation included three learning scenarios: simultaneous, early, and late. In
simultaneous training, the two lexicons were presented to the network gradually and

in parallel. At the first stage, the training vocabulary included 50 English words and

50 Chinese words. Then at every new stage, 50 more English words along with

50 more Chinese words were added to the training pool until the final stage when the

size of each lexicon reached 500. Here, a training stage included 10 epochs, which

means that each available word was presented to the network 10 times at each stage.

In the sequential learning situation, the learning of L2 was delayed relative to that of

L1, either only slightly (early learning) or significantly (late learning). In the case of
early L2 learning, the network was first trained on 100 L1 words (Chinese).5 Then
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the L2 words (English) were presented to the network stage by stage (each stage with

50 more new L2 words) along with the corresponding increment of L1 words. The

training would end 10 stages later, when the entire list of 500 L2 words was seen by

the network. In the case of late learning, L2 words began to join the training only

after 400 L1 words had been presented to the network during the first four stages.

Then the training continued for another 10 stages until all the 500 L2 words were

seen by the network (so that exposure to L2 words in all three scenarios was over 10

stages). Comparison of the three learning scenarios should allow us to see the effects

that the consolidation of lexical organization in one language has on the lexical

representation in the other language.

Results and discussion

Bilingual lexical representations

First we examine the phonological and semantic organizations of the bilingual

lexicons in the corresponding maps in our model. Figure 2 shows the examples of

the distribution of the two lexicons on each map in the different learning situations.

Due to the large size of the lexicons and maps, only broad areas of the active neurons

are displayed. In Figure 2, the boxes on the left represent the distributions of the

bilingual lexicons in the semantic map, and the boxes on the right indicate the

distributions in the phonological maps. Black regions represent those neurons that

can best be labeled by L2 (English) words, whereas white regions indicate those

neurons that best represent L1 (Chinese) words in the input space.

Here, Figures 2a and b represent the simultaneous acquisition situation. We can

see that our network shows clear and distinct lexical representations of L1 and L2

on both the phonological and the semantic levels and within each language. The

results are similar to Li and Farkas’ (2002) SOMBIP, and the network’s ability to

develop distinct representations for each language shows that simultaneous learning

of two languages allows the system to easily separate the lexicons during learning

(see also similar findings from a different model by French and Janquet 2004). In

the case of sequential acquisition, however, the results are not so clear-cut. If L2

was introduced into learning early on, then the lexical organization patterns were

similar (though not identical) to those found in simultaneous acquisition, as shown

in Figures 2c and d. The differences are reflected in terms of the slightly smaller

spaces occupied by the L2 words (English, the dark areas on each map) as

compared to the lexical space occupied by L1, and the more dispersed and

fragmented distribution of L2 on the phonological map (Figure 2d) as compared

to the distribution in the simultaneous learning case (Figure 2b). We can dub these

as the ‘L2 islands.’ However, if L2 was introduced to learning late, the lexical

organization patterns were significantly different from those found in simultaneous

acquisition, as shown in Figures 2e and f. No large L2 islands appeared this time.

In fact, we can say that the L2 representations were parasitic on or auxiliary to

those of L1 words: compared with L1 words, the L2 words occupied only small and

fragmented regions, and were dispersed throughout the map. There were small L2

chunks that were isolated from each other, and interspersed within L1 regions. A

close inspection showed that the locations of the L2 words depended on how

similar they were to the L1 words in meaning (for semantic map) or in sound (for

phonological map). For example, in Figure 2f, the English words boy, bee, and bear
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were located next to the Chinese word bai2(white) since they sound similar.6

Other examples include my next to mai3(buy), her next to he1(drink), ear next

to ye2ye(grandpa). Similar examples could also be found on the semantic map

(Figure 2e): girl and boy were close to mei4mei(sister) and nv3hai(girl); go and walk

close to verbs like pao3(run), tiao4(jump), and pa2(crawl); chocolate, food, and

cake were projected to the location of Chinese words for food such as qiao3ke4li4

(chocolate), dan4gao1(cake), mian4bao1(bread), and tang2(candy).

This parasitic feature of L2 on L1 representation in the late L2 learning situation

was further tested by a quantitative measure. In particular, 32 pairs of translation

equivalents were selected from the bilingual lexicons. These translation equivalents

were all nouns with concrete meanings (see the Appendix). Furthermore, for each

pair of translation equivalents, the Euclidean distance between their locations on the

semantic map was calculated. The smaller the distance, the closer they were. The

average of the 32 distances provides us with a general estimate of the relationship

Figure 2. Examples of bilingual lexical representations on the semantic map and the
phonological map. Dark areas correspond to L2 (English) words: (a�b), simultaneously
learning; (c�d), early L2 learning; and (e�f), late L2 learning.
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between the lexical representations of the two languages (particularly for words

representing similar concepts in different languages). This measure was also applied to

the early learning and simultaneous learning situations. Five networks were

constructed for each learning situation, and the average distance based on the five

networks (trials) was measured and shown in Figure 3. A one-way analysis of variance

(ANOVA) was conducted to test the impact of the learning history (simultaneous,

early L2, and late L2) on this distance measure. Learning history was significant, F (2,

12) �19.06, pB0.001, h2�0.76, showing that the three different learning scenarios

yielded different representational structures in terms of the distance of the lexical

representations in the two languages. Post-hoc tests (pairwise differences, with

Bonferroni correction) revealed that the late L2 learning condition had significantly

shorter distances (d �25.13) than the early L2 learning condition (d �36.52) and

the simultaneous learning condition (d �42.03), pB0.01. However, no significant

difference between the early learning condition and the simultaneous learning

condition was obtained. This result from the quantitative analysis is consistent with

our qualitative analysis of Figure 2, in that the lexical representation of L2 in the late

learning situation is fundamentally different from the other two conditions.
Why is late L2 learning so different from the other two situations? We believe that

this is due to significant differences in our model’s developmental changes as a

function of learning history. In the late learning situation, L2 was introduced at a time

when the learning system had already dedicated its resources and representational

structure to L1, and L1 representations had been consolidated. So the L2 could only

use existing structures and associative connections that were already established by

the L1 lexicon. This is the sense in which we say that the L2 lexicon was parasitic

on the L1 lexicon (see Hernandez, Li, and MacWhinney 2005). The network’s

re-organizational ability (plasticity) has been significantly weakened with the

decrement of the neighborhood size on each map. Even though our model had a

certain degree of plasticity in that it could recruit new resources into the computation

when needed, this was still not sufficient to allow any radical restructuring or
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Figure 3. Average distance of the translation equivalents on the semantic map. The value
changes as a function of the L2 learning history. Results are based on five trials for each
condition and the error bar indicates standard deviation.
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complete reorganization of the map’s topology. Take the semantic layer as an

example. Due to the weak plasticity of the network under the late L2 learning

condition, the subtle differences in the meanings and the usage of L2 words (which

were novel to the network) could not be fully represented. Thus, as demonstrated by

our analyses of word density and lexical categories (see the next section), a clear

structure of the L2 lexicon could not be developed on the map. In contrast, for the

early L2 learning, the network still had significant plasticity and could continually

reorganize the lexical space for the L2. The semantic and syntactic aspects of L2

words could then still be clearly captured by our network. Rather than becoming

parasitic on the L1 lexicon, early learning allowed the entry of the L2 lexicon to

present significant competition against the L1 lexicon. This reduced ‘neural’ plasticity

for late L2 learning is consistent with what has been proposed in connectionist

accounts of age of acquisition effects in the adult lexical processing literature, that is,

that such effects are due to changes in the network’s adaptive plasticity (Ellis and

Lambon Ralph 2000; Elman 1993; Smith, Cottrell, and Anderson 2001; see

Hernanderz and Li 2007, for a review).

Segalowitz and de Almeida (2002) have suggested that adolescent bilingual

individuals are often slower and less accurate at judging the categories of words in

their L2 (or less dominant language) than in their L1 (or more dominant language)

in a simple semantic categorization task, but show an opposite pattern (L2 better

than L1) in an arbitrary categorization task. Such a finding implies that the

bilingual’s mental representation of L2 words may be relatively ‘impoverished’

(i.e. bilinguals are aware of fewer senses and semantic associations of words) in

comparison to the clear representation of L1. The latter facilitates classification in

a simple semantic categorization task but causes interference in arbitrary

categorization. Our simulation results are consistent with this interpretation, in

that the L2 lexical representations are dispersed and fragmented.

An interesting prediction can be derived from the different L2 representations

under the three different learning situations. In the late L2 learning condition, the

location of many L2 words on the semantic map depended on how similar they

were to the L1 words in meaning. They were often projected close to their

translation equivalents (e.g. nurse and hu4shi), and therefore also became associated

more closely to words in L1 which are semantically related to them (e.g. nurse and

dai4fu(doctor), since hu4shi and dai4fu are closely related in L1). Such close

distributions in the lexical representations across the two languages would make

interactions across languages stronger in the late L2 bilinguals’ language processing.

This would explain the occurrence of the priming effects between translation

equivalents or semantically related words in the late L2 bilingual’s two languages. In

contrast, in the early and simultaneous learning situations, due to the existence of

two clear and distinct lexical representations, such cross-language priming effects

should not be as apparent. This prediction has been partly supported by a recent

behavioral study conducted by Kiran and Lebel (2007), in which they found that

less balanced bilinguals often have stronger cross-linguistic semantic and translation

priming effects than more balanced bilinguals. We have started to examine the

empirical and computational bases of this prediction with a priming study and a

computational model (see Zhao and Li 2009c, for preliminary computational

findings).

516 X. Zhao and P. Li

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
Z
h
a
o
,
 
X
i
a
o
w
e
i
]
 
A
t
:
 
2
3
:
4
7
 
1
6
 
A
u
g
u
s
t
 
2
0
1
0



Word density and learning history

Another way in which learning history may have an impact on bilingual

representation in our model is the degree to which within-language lexical

distributions are packaged. Inspecting the bilingual representations on the semantic

and phonological maps, we found that the words were not evenly distributed in L1

and L2. Some areas were very dense while other areas were sparse. In some dense

areas, the retrieval of the sound or the semantic content of a word could be difficult

because the competition between words is strong and could thus result in a higher

confusion rate.7 To explore differences in density across the learning situations, we

calculated mean densities for semantic and phonological neighborhoods. We defined

the density of a word on a map as the number of words in its neighborhood (with

radius of 1) divided by the total number of units in its neighborhood (usually nine,

but could be six or four, depending on whether the tested word was on the border or

at the corner of the map). The value of this density measure ranged from one-ninth

(when only the word itself is in the neighborhood) to one (when all neighboring units

of a word are occupied by other words). Then the average group densities of L1 and

L2 words were calculated, respectively. Table 1 shows the average word densities for

L1 and L2 in both the semantic and the phonological maps. Obviously, the larger the

density measure, the more crowded the group members are on the map. We might

expect to find more competition, confusion, and errors in a high-density group. We

can see that under the late L2 learning situation, the density of the L2 words reaches

a very high level (0.78 and 0.65 for the phonology and the semantic map, res-

pectively), and this differs sharply from the other two learning situations.
These different distributions and word density patterns appear to reflect the

learning curve. Figure 4 presents the number of L2 words that can be successfully

produced by our network as a function of the L2 words available to the network at

different stages. Not surprisingly, the vocabulary sizes of the L2 words increased over

time under all three learning situations. However, a regression analysis indicates

more rapid learning for the early than the late learning situation. In fact, the pattern

for early L2 learning is quite similar to that for simultaneous learning. The regression

equation for early L2 learning has a slope of 0.95 (t (48) �34.75, pB0.001), which

is close to the regression slope of 1.008 for the simultaneous learning situation

(t (48) �34.75, pB0.001). The late L2 learning regression equation has a slope of

0.79 (t (48) �25.86, pB0.001), which indicates a slower learning speed than the early

L2 and simultaneous learning situations. The empirical bases and implications of

these learning trajectories, however, need to be further investigated.

Table 1. Word density and comprehension and production errors of L1 (Chinese) and L2
(English) in the phonology and semantic maps. Results are based on the average of five trials.

Word density Number of error

Phonology Semantic Comprehension Production

Simultaneous L1(Chinese) 0.385 0.369 36.4 37.8
L2(English) 0.397 0.427 18.6 51.8

Early L2 L1(Chinese) 0.241 0.272 20.0 36.4
L2(English) 0.583 0.566 30.4 75.2

Late L2 L1(Chinese) 0.283 0.255 20.6 11.2
L2(English) 0.781 0.650 134.2 161.2
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Comprehension and production errors

L2 learners often have comprehension and production problems in the L2,

particularly with pronunciations that they are unsure of. Recent empirical studies

have shown that bilinguals, as compared with monolinguals, often have more

difficulties generating fast and accurate names in picture naming or word naming

tasks (‘deficit’ in lexical retrieval of L2, Craik and Bialystok 2006; Gollan et al. 2005).

One possible source of such production difficulties, based on our simulation results,

could be due to the nature of the L2 representation. Lexical items in L2 are

represented in more dense neighborhoods on the map, and hence in a more likely

confusable fashion. The bilingual speaker could have difficulties in retrieving the

correct L2 items due to increased lexical competition from nearby items during speech

production. As shown in Table 1, our model under the late L2 learning situation

showed more comprehension and production errors for L2 words (134.2 and 161.2 on

average in five trials) than under the other two learning situations. In addition, when

L1 and L2 errors are considered together, most errors happened to the L2 words.

Word density is relatively low for the L1 words in general. They are more robust than

words in high-density areas and thus more resistant to competition or damage.

A correlation analysis was conducted to evaluate the relationship between the L2

word density and the number of production errors in L2. On the semantic map, the

correlation is significant, r(13) �0.73, pB0.01. The more densely populated L2

words were on the semantic map, the more production errors our network made.

Similarly, significant positive correlations are also found between our model’s L2

comprehension errors and the word density measure of L2 on both the phonological

map (r(13) �0.87, pB0.01) and the semantic map (r(13) �0.82, pB0.01). The

results suggest that the intense competition of words in the densely packed L2 areas

on the two linguistics levels may cause errors and confusions in our models’

comprehension and production of L2 words.

In the current study, we also found interesting error patterns in our network’s

comprehension and production performance. DevLex-II has been shown to be able
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Figure 4. Correctly produced words as a function of available L2 words at different stages.
Error bars indicate standard deviations, and the lines were fitted through regression analyses
(the three regression equations show the different slopes of increase for the different learning
situations). Each data point was calculated based on five trials.
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to capture children’s error patterns in a monolingual environment (Li, Zhao, and

MacWhinney 2007). These comprehension and production errors in bilingual

situations, we believe, reflect the interaction and interference of the two lexicons in

our model.

First, very strong within-language interference could be observed in the

comprehension errors in all of the three bilingual learning scenarios. Such

interference might be caused by the similarity either in sound or in meaning between

two words in the same language. For example, an activation of the English word she

on the input phonology map led to the activation of see on the semantic map. This is

an example of incorrect comprehension (from phonology to semantics) due to

within-language phonological interference. Other examples include: stove-stone;

bump-jump; glass-grass; pull-pool; qing3(invite)-qin1(kiss); and zang1(dirty)-zhang1

(piece). Semantic similarity may also lead to comprehension errors such as: kick-

drop; cut-tear; hei1(black)-lv4(green); and mi4feng1(bee)-ma3yi3(ant).
Second, comprehension errors due to between-language interference were also

found in our mode. Most of them were due to phonetic similarities (i.e. cross-language

homophones): a-e2 (goose); tongue-tang2(sugar); hair-hei1(black); ear-ye2ye (grand-

pa); and when-wan3(bowl) (see Li and Farkas 2002, for similar errors); very few were

due to semantic similarities: Mao1(cat)-bear; shou3(hand)-toe (Chinese as L2); and

kiss-qin1(kiss) (English as L2).8 However, these between-language interference errors

were observed only in the late L2 learning situation. The absence of such interference

errors in the simultaneous and early situations is probably due to the more distinct,

less dense lexical representations in these situations as compared to the late learning

situation. This analysis seems to be consistent with empirical reports as summarized

by Francis (2005) that between-language interference errors are not as common as

within-language interference errors.

Another interesting finding from our modeling is that the between-language

interference was unidirectional, that is, the comprehension of L2 words was affected

by L1 knowledge only. There was little evidence of interference from L2 to L1 in

our simulations. This also supports our earlier analysis that L2 representations are

often parasitic on L1 representations under late learning. In monolingual

simulations (see Zhao and Li 2005), DevLex-II shows lexical confusions, omissions,

replacements, or incorrect sequencing of phonemes in production. However, for the

late L2 learning situation, many such errors were due to phonemes unique to L2.

For example, [z] as in zoo and [ð] as in then, were two phonemes not found in

Chinese and therefore they were often confused with each other on the map when

English was learned as L2. Other examples include confusion of phonemes like [&:]

as in born and [#] as in pot. Similar examples were obtained when Chinese was

learned as L2 in seperate simulations. For instance, c ([tsg]) and ch [SQ‘] were two

phonemes not found in English and therefore they were often confused with each

other on the map. Other examples include confusion of phonemes such as j, q, x

([S’], [S’‘], [’]), z and zh ([ts], [SQ]), s and sh ([s], [Q]). In late L2 learning, the subtle

differences between those phonemes are not highly distinguishable in a system that

has already committed itself to the L1 phonemic inventory. These simulated

patterns match up well with speech learning theories indicating that early learners

can create new phonetic categories more easily than late learners, and that such

differences are due to the stabilization of the phonetic representation of L1 vs. L2

over the lifespan of learning (see Flege 1995).
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Conclusion

In this study we extended DevLex-II, an unsupervised neural network model, to the

simulation of bilingual lexical acquisition, representation, and interaction. We

highlight three key features of our model:

(1) In contrast to previous computational models of bilingualism, our model is

a learning model based on unsupervised learning and Hebbian learning, two

powerful and biologically plausible principles of computation. These

principles have allowed us to simulate the dynamics underlying both

monolingual and bilingual lexical representations and interactions.
(2) Our model relies on the use of large-scale realistic linguistic data as the

input. In total, we were able to simulate the development of 1000 words that

were based on children’s early lexicons from the two languages. The input

representations of these words were carefully coded to reflect the linguistic

features of the target languages. Their semantic features were extracted from

the parental speech in the CHILDES database. By simulating actual lexical

forms and meanings, we were able to achieve developmental and lexical

realism.

(3) We considered computational learning properties (e.g. self-adjustable

neighborhood functions) against the context of realistic language learning

so that the DevLex-II model has the ability to handle the plasticity�stability

problem in L2 learning. These properties are crucial in providing our model

with the flexibility to systematically simulate the impact of the learning

history of L1 vs. L2 on the linguistic representations of the two languages.

Our findings suggest that the nature of bilingual representation is the result of a

highly dynamic process in which mechanisms of learning interact with the timing

and history of learning to determine developmental trajectories. The three

scenarios of learning simulated in our model demonstrate how developmental

patterns are shaped by the interactive dynamics inherent in learning. In particular,

when the learning of L2 is significantly delayed relative to that of L1, the

structural consolidation of the L1 lexicon will adversely impact the representation

and retrieval of L2 words, which results in a parasitic L2 representation due to

reduced plasticity in the system’s structuring of an L2 (Hernandez and Li 2007;

Hernandez, Li, and MacWhinney 2005). Thus, late L2 learning differs in

fundamental ways from early L2 or simultaneous L1�L2 learning, and connec-

tionist models such as those simulated in DevLex and DevLex-II can provide

detailed computational and mechanistic specifications for unveiling such differ-

ences through interactive dynamics in development. Future research is needed to

further link our simulation patterns with learning data and to evaluate the model

against human performance.
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Notes

1. In some models, weights may be prewired and cannot be changed, which is the case, for
example, in earlier models like the IA model of McClelland and Rumelhart (1981).

2. We have also obtained some preliminary results of applying our model to bilingual
acquisition, on which the current study is based (see Zhao and Li 2007, 2008).

3. The detailed procedure of implementing this new neighborhood function is described in
Li, Zhao, and MacWhinney (2007).

4. We excluded homographs in our simulations because the unique semantic representations
for them are difficult to get; and excluded phrases because they include more than one
word. See Bates et al. (1994) for reasons for excluding the other four types of words from a
normal analysis of vocabulary development.

5. In separate simulations, we obtained similar results when English was L1 and Chinese was
L2.

6. The number in the Chinese phonetic transcription indicates the tone of the corresponding
word.

7. Initially, high density may bring a certain advantage to the learning of novel words in the
dense areas, in that once a novel word is learned, its close neighbors may be more easily
mapped to the semantic category to which they belong. However, the disadvantages
caused by strong competition and high confusion could overwhelm the advantages
eventually.

8. We constructed separate models in which either Chinese or English was the L2 (with the
same modeling parameters). Given that the results from these models were very similar,
we report here mainly the results from modeling Chinese as L2 and English as L1.
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Appendix

The 32 pairs of English�Chinese translation equivalents used in our study.

English Chinese

Sock Wa4zi
Ant Ma3yi3
Pillow Zhen3tou
Bug Chong2zi
Star Xing1xing
Cup Bei1zi
Ear Er3duo
Hair Tou2fa
Spoon Shao2zi
Monkey Hou2zi
Bird Xiao3niao3
Button Kou4zi
Train Huo3che1
Bottle Ping2zi
Coat Da4yi1
Nail Ding1zi
Duck Ya1zi
Rock Shi2tou
Hat Mao4zi
Tongue She2tou
Mouse Lao3shu3
Toy Wan2ju4
Basket Lan1zi
Flower Hua1duo3
Sky Tian1kong1
Sweater Mao2yi1
Shoe Xie2zi
Animal Dong4wu4
Drawer Chou1ti
Tiger Lao3hu3
Corn Yu4mi3
Nose Bi2zi
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