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Abstract

In this paper we present a self-organizing neural network model of early lexical development called DevLex. The network consists of two

self-organizing maps (a growing semantic map and a growing phonological map) that are connected via associative links trained by Hebbian

learning. The model captures a number of important phenomena that occur in early lexical acquisition by children, as it allows for the

representation of a dynamically changing linguistic environment in language learning. In our simulations, DevLex develops topographically

organized representations for linguistic categories over time, models lexical confusion as a function of word density and semantic similarity,

and shows age-of-acquisition effects in the course of learning a growing lexicon. These results match up with patterns from empirical

research on lexical development, and have significant implications for models of language acquisition based on self-organizing neural

networks.

q 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Connectionist modeling of language acquisition has

made significant progress since Rumelhart and

McClelland’s pioneering model of the acquisition of the

English past tense (Rumelhart & McClelland, 1986).

However, three major limitations need to be considered

for the further development of neural network models of

language acquisition.

First, some language acquisition models use artificially

generated input representations that are isolated from

realistic language uses. Other models use representations

that are limited to small sets of vocabulary with handcrafted

phonological and semantic representations. Such artificially

generated or limited sets of vocabulary prohibit us from

understanding the structure of realistic lexicons in language

learning.

Second, most previous models have used supervised

learning through back-propagation as the basis for network
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training (see models reviewed in Elman et al., 1996;

Quinlan, 2003). Although these types of networks have been

able to model many aspects of children’s language learning,

their biological and psychological implausibility limits their

explanatory adequacy. In real language learning, children

do not receive constant feedback about what is incorrect in

their speech, or the kind of error corrections provided to the

network by supervising learning algorithms (see Li, 2003;

MacWhinney, 2001a; Shultz, 2003 for discussion).

Third, neural network models of lexical learning (Li,

2003; Li & MacWhinney, 1996; MacWhinney, 2001a;

Plunkett, Sinha, Møller, & Strandsby, 1992) have not yet

devised a method for modeling the incremental nature of

lexical growth. Children’s vocabularies expand gradually

by adding a few words each day. Currently, there are no

neural network models that are capable of modeling this

gradual expansion of vocabulary. The core problem here is

the phenomenon of catastrophic interference (see French,

1999 for a review). If we train a network to acquire a

vocabulary of 100 words, for example, and then train it on

another 100 words, the addition of the second set will

disrupt (or interfere catastrophically with) the learning of

the first 100 words. Although we know that learning new
Neural Networks 17 (2004) 1345–1362
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words can lead to confusion with old words for children

(Gerskoff-Stowe & Smith, 1997; see discussion later), these

effects only involve local competitions between pairs of

words and are never catastrophic.

To address these three problems, we developed

DevLex, a self-organizing neural network model of the

development of the lexicon. DevLex is designed to

combine the dynamic learning properties of connectionist

networks with the scalability of representation models

(such as HAL, Burgess & Lund, 1997). It is able to

acquire a continually expanding vocabulary whose

representation enriches in a realistic way with linguistic

contexts over time. As such, the model itself also evolves

dynamically with learning. DevLex relies on corpus-

based speech data to establish the sequence as well as

the structure of the input, using phonological and

semantic representations that correspond to actual

language use.

Previous work by Li (2003), MacWhinney (2001a),

Miikkulainen (1993, 1997), and Ritter and Kohonen (1989)

has shown that self-organizing neural networks, especially

SOMs, are particularly suitable as models of the human

lexicon. In our earlier work we used SOM to simulate

language acquisition in various tasks: Li (1999, 2000)

simulated the acquisition of lexical categories along with

morphological acquisition (prefixes un- and dis- and suffixes

-ing and -ed; see Li, 2003 for a summary); Farkas and Li

(2001) modeled lexical category representation in an

artificial corpus and a natural speech corpus based on

parental input from the CHILDES database (MacWhinney,

2000); Farkas and Li (2002a) used growing nodes in SOM

on the basis of the increasing vocabulary sizes during

learning; Farkas and Li (2002b) modeled word confusion in

production as a function of word frequency, word density,

and rate of vocabulary increase; and Li and Farkas (2002)

modeled lexical development in bilingual children. In all

cases, the simulated patterns captured the development of

basic linguistic categories from the statistical characteristics

of the input data. Building on the results of these studies, the

current model attempts to account for three important

phenomena in language acquisition: (a) the emergence and

organization of linguistic categories in early lexical

representation, (b) early lexical confusion in children’s

productive speech during naming, and (c) age-of-acqui-

sition effects in early lexical development. Before providing

details of the model, we will briefly discuss the psycho-

linguistic phenomena that have motivated our compu-

tational model.

Early lexical development has intrigued cognitive and

developmental psychologists for a number of important

reasons. First, a central issue in the cognitive neuroscience

of language has been how the brain represents linguistic

categories. Neuropsychological and neuroimaging studies

have demonstrated distinct areas of cortical activation in

response to nouns, verbs, and other linguistic categories

(e.g. Caramazza & Hillis, 1991; Damasio Grabowski,
Tranel, Hichwa, & Damasio, 1996; Pulvermüller, 1999).

Nativists (Chomsky, 1975; Fodor, 1983; Pinker, 1994) take

these findings as evidence that humans have a species-

specific genetic code that determines modular lexical

organization in the brain. However, an alternative account

for these same findings holds that the neural modularization

of linguistic categories is an emergent process (Elman et al.,

1996; MacWhinney, 1998). In this account, it is the distinct

syntactic and semantic functions of groups of words during

mental processing that account for their dynamic organiz-

ation during development into different areas of the brain.

For example, the processing characteristics of nouns and

verbs in Chinese differ from those in English, and thus we

would expect different patterns of neural activities for the

two languages (see Li, Jin, & Tan, 2004). One of the goals of

our model is to use SOM’s topography preserving properties

to study the emergence and organization of linguistic

categories across stages of lexical learning.

A second issue that has intrigued developmentalists is the

changing developmental landscape of early vocabulary (see

Elman et al., 1996 for discussion). For example, it has been

observed that between 18 and 20 months, children’s

productive vocabulary increases rapidly, a phenomenon

often described as the ‘vocabulary spurt’, a sudden and rapid

acceleration in the amount of words produced in a short

period (Bates & Carnevale, 1993; Dromi,1987). Associated

with such a spurt is a brief period of confusion regarding the

uses of some words, during which time the child calls some

objects by the wrong name. This confusion has also been

labeled the ‘naming deficit’ (Gerskoff-Stowe & Smith,

1997). One prominent account of this phenomenon is that

children’s lexical confusions reflect a retrieval difficulty.

The idea is that children may have encoded the correct

lexical semantic representations, but because these rep-

resentations are being densely packed in memory due to

vocabulary spurt (and are therefore in strong competition

with each other), successful and efficient retrieval of the

stored items is temporarily disrupted (Gerskoff-Stowe &

Smith, 1997). Although this explanation appears reasonable,

other factors may also be important in the process of lexical

confusion. Bowerman (1978, 1982) has suggested that

children undergo periods of organization and reorganiz-

ation, in which semantically related word pairs are more

likely to be substituted for one another when children

recognize their shared meaning components (e.g. put

substituted for give, or take substituted for bring). In other

words, at this stage word pairs that are not initially

recognized as semantically related now move closer

together in semantic space, but their fine-grained

distinctions have not been worked out. Thus, semantic

relatedness in the representation may play an important role

in triggering early lexical confusion. Although Bowerman’s

proposal was not used specifically to explain the early

‘naming deficit’, according to this perspective, confused

words, whether they occur early or late during lexical

acquisition, should tend to be those that are neighbors in



Fig. 1. The DevLex model of lexical development. Two growing self-

organizing maps (GMAPs) are connected via associative links updated by

Hebbian learning; the P-GMAP self-organizes on word form (phonological

information) and the S-GMAP self-organizes on word meaning. Both form

and meaning are presented to the network in the input.
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the same densely populated semantic neighborhood, rather

than random pairs of words. Another goal of the current

study is to examine these different accounts of early lexical

confusions in the context of an explicit computational

model.

Third, an emerging focus in recent psycholinguistic

research is the age at which a word is learned, or its age of

acquisition (AoA; Ellis & Morrison, 1998; Morrison &

Ellis, 1995). This research suggests that AoA is often a

better predictor of a word’s processing latency than is

frequency: people are faster at reading and naming words

that are acquired early as compared to words that are

acquired late. Several connectionist models based on feed-

forward networks have attempted to simulate the AoA

effects. These models used an auto-association task in which

randomly generated patterns (representing words) are

considered learned if the patterns can be accurately

reconstructed at the output. For example, Ellis and

Lambon-Ralph (2000) used a two-staged learning process,

in which the training items were split into the early versus

late stages. They showed that when the words were

presented to the network in this staged fashion, that is,

with one set of words trained first and a second set added to

the training set, the network would display strong AoA

effects, as shown in the lower reconstruction errors for early

learned words. They suggested that the AoA effects were

due to the lost plasticity in their network as a result of

learning. Smith, Cottrell and Anderson (2001) showed that,

using the same model as that of Ellis and Lambon-Ralph but

without staged learning, the earlier a word was learned, the

lower its final reconstruction errors would be. AoA effects

are important in our view because they impose significant

constraints on connectionist models: a model has to possess

both plasticity in learning and stability in representation in

order to display AoA. Minimally, the model has to be able to

overcome catastrophic interference, with early-learned

structures undisrupted by new learning. Thus, a final goal

of the current study is to develop a computational model that

can deal with the plasticity-stability dilemma and lend itself

naturally to AoA effects.

The DevLex model was designed to address each of these

three central issues: cortical topography, vocabulary

dynamics, and AoA effects. At the same time, it is designed

to correct the three modeling problems we noted earlier by

using realistic input, self-organization, and a dynamically

expanding lexicon. With these goals in mind, we are

now ready to turn to the computational details of the

DevLex model.
2. The DevLex Model

2.1. A Sketch of the Model

Fig. 1 presents a diagrammatic sketch of DevLex. The

model has been inspired by Miikkulainen’s (1993, 1997)
DISLEX, in which multiple SOMs are connected by

Hebbian learning. DevLex consists of two identical growing

maps (GMAPs) - a phonological map that processes

phonological information of words (P-GMAP), and a

semantic map that processes lexical-semantic information

(S-GMAP).

Formally, a GMAP is defined as a graph GZ(A,C),

where A is a set of nodes, and C3A!A is a set of

connections between the nodes. Each node k in a GMAP has

an input weight vector mk associated with it. Given a

stimulus x (distributed word representation), the localized

output response of a node k is computed as

ak Z 1 K
jjx KmkjjKdmin

dmax Kdmin

if k 2Nc

0 otherwise

8<
: (1)

where Nc is the set of neighbors of winner c (whereas

acZmaxk{ak}), dmin and dmax are the smallest and the

largest Euclidean distances of x to node’s weight vectors

within Nc. Upon training of the network, a phonological

representation of the word (‘word form’) is presented to the

network, and simultaneously, the semantic representation of

the same word (‘word meaning’) is also presented to the

network. Through self-organization, the network forms a

pattern of activation on the P-GMAP in response to the word

form, and a pattern of activation on the S-GMAP in

response to the word meaning. Weights of nodes around the

winner are updated (self-organized) as

mkjðt C1Þ Z mkjðtÞCaðtÞ½xj KmkjðtÞ� for all k 2Nc (2)

The two GMAPs are bidirectionally linked with

associative connections. Simultaneously with input weights,

the associative weights between active nodes in both

GMAPs are updated using Hebbian learning (Hebb, 1949)

Dwkl Z aðtÞaS
kaD

l (3)

where wkl is the unidirectional associative weight leading

from node k in the source map to node l in the destination

map, and aS
k and aD

l are the associated node activations.
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The associative weight vectors are then normalized:

wklðt C1ÞZ
wklðtÞCDwklP

l½wklðtÞCDwkl�
2

� �1=2
(4)

The combination of Hebbian learning with self-organiz-

ation can account for the process of how the learner

establishes relationships between word forms and lexical

meaning representations on the basis of how often they

co-occur and how strongly they are co-activated in the

representation. Links between the maps are then used to

propagate the activation from one map to the other to model

production (from semantics to word form), and comprehen-

sion (from word form to semantics). Formally, the response

in the destination map can be evoked by propagation of

activity from the source map:

aD
l Z gðylÞ Z g

X
k

wkla
S
k

 !
(5)

where the activation function g(y)Zy/ymax scales down the

activations in the destination map linearly into the interval

of 0–1.

In production, the S-GMAP first creates its output

activation pattern, as a response to its input stimulus

(word meaning representation). This activation pattern then

propagates to the P-GMAP via the semantic-to-phonologi-

cal associative links and creates an activation pattern

concentrated around the winner. The winner’s weight vector

is then compared with all word forms from the current

lexicon, and the one closest to it (in Euclidean distance)

becomes the retrieved word form. The comprehension

process is analogous and runs in the opposite direction.

While the overall architecture of DevLex is similar to

that of DISLEX, the major difference between the two is

that DISLEX uses standard SOM, whereas DevLex uses

GMAPs. The use of GMAPs is based on the consideration of

the growing nature of the lexical learning task: both the size

of the lexicon and the input space (the number of non-zero

components in the semantic vectors) grow as learning

progresses. In addition, the GMAPs in DevLex combine the

advantages of SOM and ART2 in learning (see discussion in

Section 2.3). DevLex also allows for the dynamic creation

of lexical semantic representations as inputs to the

S-GMAP, using the WCD (word co-occurrence detector)

module described below.

DevLex operation involves three processes: (1)

formation of distributed word representations (both phono-

logical and semantic), (2) GMAP organization, and (3)

formation of associative links between form and meaning.

The second and third processes occur simultaneously. The

first process occurs relatively independently of the other two

and can be thought of as the process in which the child

extracts phonological and semantic information from

lexical contexts (sentences) during listening. Our working

hypothesis here is that the formation of word meanings is a

gradual process and that it takes much longer than
the extraction of word forms. Before providing detailed

descriptions of DevLex’s mechanics, let us first describe

how input data—both phonological word forms and lexical

meanings—are created and used.

2.2. Phonological and semantic representations

of the input lexicon

We used the PatPho system to construct the phonological

patterns for word forms. PatPho is a generic phonological

pattern generator for neural networks that fits every word

(up to trisyllables) onto a template according to its vowel–

consonant structure (Li & MacWhinney, 2002). It uses the

concept of syllabic template: a word’s representation is

made up by combinations of syllables in a metrical grid, and

the slots in each grid are made up by bundles of features that

correspond to phonemes, consonants (C) and vowels (V).

For example, a full trisyllabic template would be

CCCVVCCCVVCCCVVCCC, with each CCCVV repre-

senting one syllable and the last CCC representing final

consonant clusters. This template has 18 C and V units.

PatPho uses articulatory features of phonemes (Ladefoged,

1982) to represent each C and V, and a phoneme-to-feature

conversion process produces real valued or binary feature

vectors for any word up to three syllables in length. We

decided to use the binary option, because binary coding

provided better discrimination of phonemes. To save

computational time, the feature vectors were dimension-

reduced to 54 dimensions using PCA (accounting for 99%

of variance). PatPho shows advantage over traditional

phonemic representations in its ability to accurately capture

phonological similarities of multisyllabic words.

We assume that children’s auditory representations of

word forms are close to those of the target language (Menn

& Stoel-Gammon, 1995). In contrast, children’s semantic

representations are built up gradually during the develop-

ment of the lexicon. We constructed two sets of semantic

word representations in qualitatively different ways: the first

set was constructed from word co-occurrence probabilities

using the WCD network (word co-occurrence detector; see

also Farkas & Li, 2001, 2002a), and the second set was

derived from the WordNet database using special feature-

extracting routines (Harm, 2002). Our best results were

achieved when these two sets of representations were

combined and normalized for vector uniformity, as

discussed below.

2.2.1. WCD-based meanings

WCD is a special recurrent neural network that learns the

lexical co-occurrence constraints of words (see Appendix A

for details). WCD reads through a stream of input sentences

(one word at a time) and learns the transitional probabilities

between words which it represents as a matrix of weights.

Given a total lexicon sized N, all word co-occurrences can

be represented by an N!N contingency table, where the

representation for the ith word is formed by concatenation



Fig. 2. A diagrammatic sketch of GMAP (growing map). All recruited

nodes (shown as large empty circles) in GMAP fit an underlying grid, and

new nodes can only be recruited in yet unoccupied positions (small circles).

Nearest nodes are connected with each other to define the GMAP topology.

Each GMAP node has connections from all inputs (as in SOM). Only the

links to one node (filled circle) are shown here.

P. Li et al. / Neural Networks 17 (2004) 1345–1362 1349
of ith column vector and ith row vector in the table. This

procedure is similar to the method used within the HAL

model of Burgess and Lund (1997). Hence, the two vectors

correspond to the left and the right context, respectively.

The WCD method allows us to build semantic

representations on the fly, incorporating more and more

different words in a context, until the size of the lexicon (n)

reaches the target N.

This incremental scenario entails that the number of non-

zero components in the semantic vectors will grow as the child

learns new words (and is always 2n). For example, given a

total target lexicon, N, of the size 500 and the current lexicon,

n, of the size 50, only the first 100 components of the 1000-

dimensional word-representation vectors can be non-zero.

The rest of the components are zero, since the remaining

words are ignored because they are not yet available on the

S-GMAP, despite their appearances in the corpus. This

scheme can be considered as corresponding to the situation in

which the young child does not understand some context

words and treats them as noise. Metaphorically one can think

of this scenario as filling the holes in a Swiss cheese: initially

there may be more holes than cheese but the holes get filled up

gradually, as more words are incorporated and the co-

occurrence context expands.

To make the WCD-based representations uniform across

different vocabulary sizes, all representation vectors were

submitted to random mapping (Ritter & Kohonen, 1989) to

achieve vector normalization in terms of number of (non-

zero) components. The mathematical details of this random

mapping process are given in Appendix B.

2.2.2. WordNet-based meanings

WordNet-based features were derived by a feature

generation system (Harm, 2002) that can produce a set of

binary features for each of the 500 words. Harm’s software

incorporates semantic features mainly from WordNet, a

computational thesaurus that provides semantic classifi-

cation of the English lexicon in terms of hyponyms,

synonyms, and antonyms, as well as searchable word entries

with semantic definitions (Fellbaum, 1998; Miller, 1990).

Harm extracted relevant semantic features from WordNet for

nouns and verbs, but for adjectives he hand-coded the

semantic features according to a taxonomy of features given

by Frawley (1992). About two-dozen adjectives in our

simulation vocabulary were not found in Harm’s coding. For

these, we hand-coded a set of features, also according to

Frawley. The above method yielded a list of 459 binary

features in total, with the number of features for any given

word ranging from 1 to 12. For computational consistency,

WordNet-based representation vectors were also submitted

to random mapping for dimension reduction (DZ100

dimensions). Note that, however, unlike WCD-based

representations, WordNet-based representations are static

and thus do not evolve along with the growing vocabulary.

One could consider the addition of WordNet-based

features as providing the learning process with semantic
information grounded on concepts and percepts in the real

world. One would expect that both sets of information

should be important for lexical acquisition, and that

simulations using both WCD-based and WordNet-based

representations should end up with an increased accuracy in

capturing linguistic categories. We will discuss the effects

of such a combination in Section 3.
2.3. Growing map (GMAP)

DevLex was designed to allow us to explore the three

core theoretical issues we discussed earlier. Specifically, it

should (1) allow for an incremental lexicon to self-organize

topographically into categorical representations in a grow-

ing map architecture, (2) model word confusion rates in

production at early stages of learning, and (3) capture the

age of acquisition of the words in the map in which learning

needs to be stable despite subsequent lexical growth.

Our pilot simulations indicated that SOM accounts well

for (1) and (2), but has difficulty in accounting for (3). This

is because SOM uses a neighborhood concept that allows for

the formation of a topographic map, which makes it difficult

to set SOM learning parameters appropriately for an

incremental lexicon. As new words enter the lexicon for

learning (i.e. the pool of words used for training at current

time), they tend to ‘fluctuate’ in the map (i.e. changing their

winners due to neighborhood influence) and merge with

other words in the map during growth. Such fluctuations and

mergers result in catastrophic interference, a problem we

mentioned in Section 1.

To solve this problem, our model implements GMAPs by

a novel combination of SOM with the Adaptive Resonance

Theory for real-valued patterns (model ART2; Carpenter &

Grossberg, 1987). Although SOM and ART2 have been

designed for different purposes, both models are classical

self-organizing neural networks and features of both can be

exploited in a model of lexical development such as

DevLex. The building block, GMAP, consists of nodes

that form a planar graph (rather than a grid), whose

connectivity structure determines the neighborhood

relations, as illustrated in Fig. 2. All GMAP nodes are
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defined on an underlying grid, so that each node can be

identified by its two integer coordinates in that grid.

Although there have been several growing neural

network models in the literature (Blackmore & Miikkulai-

nen, 1995; Fritzke, 1994; Marsland, Shapiro, & Nehmzow,

2002), no previous model has combined SOM and ART

within a growing architecture.1 We see such a combination

as combining the virtues of both SOM and ART2 for

effectively modeling lexical acquisition. Thus, we designed

DevLex to function in two modes: first as a SOM for map

organization, and then in ART mode during vocabulary

growth.2 Since ART does not have the topography

preserving features as does SOM, we enhanced it with a

novel mechanism of topographic placement of newly

recruited nodes in GMAP (see Appendix C). In addition,

the transition between the two learning modes is not sharp

but gradual (see Section 2.5), allowing us to model the

gradual nature of developmental phenomena. Algorithmi-

cally, the two modes (SOM and ART) of DevLex differ

from one another in two respects: node neighborhood and

node recruitment. In SOM mode, neighborhood structure

exists but new nodes cannot be recruited, whereas in ART

mode, there is no neighborhood function but new nodes can

be recruited. Other properties such as weight update and

learning rate are kept the same for both modes. In short,

such a dynamic instead of a fixed map structure solves the

combined problems of (1)–(3), and also facilitates training

(e.g. overall typographic order can be more easily

established) because the model need not to update all

possible weights right from the beginning.

We hypothesize that the transition from SOM to ART

corresponds to maturational processes (both functional

and anatomical) known to occur early in mammalian

brains which, in language-related areas may be associated

with early vocabulary growth (see Quartz & Sejnowski,

1997 and references therein).3 In particular, acceleration

in vocabulary growth in early child language may be

associated with the increase in the number of synaptic

connections within and across cortical regions in the brain

(Elman et al., 1996). As the child learns more and more

words, lexical confusions tend to occur. To resolve these

confusions, a mechanism is needed to accommodate

further word learning. DevLex does this by recruiting
1 Marsland et al.’s (2002) model used a similar mechanism as ours for

recruiting new nodes (e.g. allowing recruitment at every single iteration),

but their model did not combine SOM and ART and differed from DevLex

in other aspects.
2 Strictly speaking, we can only speak of the ART mode instead of the

ART network for DevLex. The model borrows from ART only the capacity

of node recruitment, while its GMAP architecture remains unchanged.
3 While contentious debates exist on the facts and the functional role of

synaptogenesis and neurogenesis in the brain, recent evidence suggests that

both types of neural genesis occur across the life span and have important

developmental and cognitive consequences for the learning species (see

Gould, Tanapat, Hastings, & Shors, 1999; Quinlan, 2003; Shultz, 2003 for

discussion).
new resources (i.e. new nodes in the ART mode), while

keeping the overall structure of already learned words

stable. During SOM learning, the network can mark out

the overall shape of the basic lexical space (i.e. basic

structure and topography of the lexicon), whereas during

ART learning, the network can add in more words and

fine-tune this initial structure. This consideration is based

on the hypothesis that children can quickly acquire a

growing vocabulary if the basic lexicon space is

established (Li & Zhao, 2004; Elman, 2004).
2.3.1. GMAP development in SOM mode

When DevLex is in SOM mode, GMAP formation is

expected to exploit the topography preserving properties of

SOM to develop lexical organization. Self-organization in

SOM occurs in a layer of processing units, arranged in a

two-dimensional regular sheet (a planar graph in our case),

where each processing unit in the network is a location on

the map that can uniquely represent one or several input

patterns (Kohonen, 1982, 2001). In SOM, two major

parameters are modulated to help achieve convergence

and order: the learning rate for weight update, and the

neighborhood radius that determines the area of organiz-

ation. DevLex uses these ordering properties of SOM to

establish a coarse map of early words, allowing the model to

simulate the early emergence of coarsely organized

linguistic categories.
2.3.2. GMAP development in ART mode

In ART mode, node neighborhood becomes zero, and

node recruitment is turned on. The elimination of node

neighborhood reduces the chance of node shifting for

winners, as each node now has a better chance to preserve its

status as winner for the same word. Node recruitment is

configured so that new nodes can only be recruited in free

grid positions. At the beginning of learning, the GMAP

starts with a subset of nodes fitting an underlying grid and

new nodes are recruited to free grid positions in its limit.

This process continues until the GMAP becomes a SOM in

terms of connectivity, that is, a regular grid in which all

positions are taken (see Fig. 2). We do not view recruiting as

involving the physical addition of new nodes, but rather

incorporating new nodes by sprouting their lateral connec-

tions to neighboring nodes and allowing all inputs to sprout

connections to them. This weight sprouting models the

process of synaptogenesis that may be associated with early

vocabulary growth (see Elman et al., 1996; Quartz &

Sejnowski, 1997).

ART2, as one of several ART family models, has been

designed as a biologically plausible model of clustering

(categorization) of real-valued input vectors. The model

reads input vectors one at a time and whenever the input is

not sufficiently close to any of the existing nodes



Fig. 3. Vocabulary growth profile according to CDI order of acquisition for

the four major categories.
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(more precisely, to any of their weight vectors as in SOM), a

new node becomes recruited. Otherwise, only the winner’s

weight vector is slightly changed toward the current input

without any consideration of neighborhood structure as

represented in the GMAP. In the original ART2, the

closeness between an input and nearest weight vector is

based on the cosine of the two vectors, which is then

compared to a pre-specified vigilance parameter. Low

vigilance leads to coarse clustering of inputs, in which a

set of similar inputs will tend to form a cluster, and be

represented by a single node whose weight vector will

converge to the centroid of these inputs. In contrast, high

vigilance leads to very fine-grained clustering, where each

input (word) can be assigned its own representing unit. In

DevLex, we use Euclidean distance as a similarity measure,

which is compared to a node insertion threshold (qpho(t) for

P-GMAP and qsem(t) for S-GMAP) being inversely related

to the vigilance parameter. A node may be inserted if

mink{jjxKmkjj}Oq(t)). In order to facilitate smooth

transition between the two modes (and hence, allow for

modeling development), linearly decreasing insertion

thresholds are used for both GMAPs.

Unlike SOM, ART2 does not represent topographic

relations between nodes. However, topographic represen-

tations are important for our study, as discussed earlier.

Since we wish to examine the topographical organization of

lexical representations, we need to find the position of the

new node in the existing GMAP that would best fit the

nearest neighbors’ preservation from input to output. We do

this by using the Distance Ratio Preservation (DRP)

procedure. Appendix C provides the details of the DRP

procedure, and Appendix D the pseudocode of the whole

DevLex algorithm.
4 We used this stage-like growth in vocabulary size only as a way of

streamlining the computation and organizing the presentation of the results.

It would have also been possible to break the training set down into

maximum, 500 stages with one-word increments at a time. This would not

have qualitatively altered the general results, but would have prolonged the

training time (due to the number of evaluations to be run at the end of each

stage).
2.4. Structuring the input lexicon

To model early lexical acquisition by children, we

used as our basis the vocabulary from CDI, the

MacArthur–Bates Communicative Development Inven-

tories (Dale & Fenson, 1996; Fenson et al., 1994). From

the Toddler’s List, we extracted 500 words and sorted them

according to order of acquisition (the original Toddler’s

List contains 680 words; we excluded the homographs,

word phrases, and onomatopoeias from our analysis). The

order of acquisition of the 500 words was determined by

the CDI lexical norms at the 30th month (Dale & Fenson,

1996), as 500 words may correspond to the size of the

vocabulary of an average 30-month-old child (Bloom,

2000). To model an incremental lexicon and to make the

modeling more tractable, we divided the 500 words into 10

major growth stages, at 50, 100, 150, 200, 250, 300, 350,

400, 450, and 500 words. These major stages were

necessary for computing WCD-based meanings (see

below). Within each stage, the new 50 words were further

divided into five sub-stages, each having 10 words. As a
result, the vocabulary grew in a more fine-grained fashion

with 10 new words at each increment.4

Unlike previous simulations our study used a growing

vocabulary whose composition is consistent with known

observations regarding variation in growth across gramma-

tical categories (Bates et al., 1994). Fig. 3 presents the

vocabulary composition regarding the four major gramma-

tical categories used in our simulations. In the original CDI,

words are divided into 22 smaller categories. Four CDI

categories—games and routines, sound effects, time words,

and places to go were excluded from our analyses (see Bates

et al., 1994 for why these words should be excluded from a

normal analysis of vocabulary development). The major

categories in Fig. 3 thus collapsed the remaining 18 CDI

categories, as follows: (1) nouns, including 10 nouns

subcategories: animals, body parts, clothing, food, house-

hold, outside, people, rooms, toys, and vehicles, (2) verbs, (3)

adjectives, and (4) closed-class words, including six

subcategories: auxiliary verbs, connecting words, preposi-

tions, pronouns, quantifiers, and question words. The figure

shows that the number of nouns linearly increases toward the

end, and the number of verbs also increases but with a much

slower rate. Given the constraints of these earliest words,

there is a clear ‘noun-bias’ in this vocabulary (286 words), as

compared to the number of verbs (98), adjectives (51), and

closed-class words (65). Adjectives and closed-class words

rarely come into the vocabulary until the 100-word mark.

Thus, the accelerating profile of vocabulary growth at early

stages of learning might be associated with this noun-bias

(see GoldField & Reznick, 1990).



Table 1

DevLex parameters that modulate vocabulary development during training

Vocabulary size 50 100 150 200 250 300 350 400 450 500

GMAP mode

coef.

1 1 1 0.8 0.6 0.4 0.2 0 0 0

Nbhd radius 3 2 1 0 0 0 0 0 0 0

q_sem 1 0.85 0.7 0.55 0.4 0.25 0.25 0.25 0.25 0.25

q_pho 3.5 3 2.5 2 1.5 1 0.9 0.9 0.9 0.9

5 It turned out that some nodes were always left unused, so both GMAPs

typically ended up with a larger number of nodes than the number of

acquired words.
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To represent the 500 words as input to our network, we

first generated the phonological forms for the words using

the PatPho generator, in a left-justified template with binary

encoding (Li & MacWhinney, 2002; see also Section 2.2).

Second, the WCD-based word meaning representations for

the 500 words were computed by using the parental input

from the CHILDES corpus (Li, Burgess, & Lund, 2000).

The parental CHILDES corpus contains the speech

transcripts from child-directed adult speech in the

CHILDES database (MacWhinney, 2000). WCD was

performed on words at each of the 10 major growth stages,

resulting in 10 different data sets with increasing number of

entries (i.e. from 50 to 500). Each set was used during the

corresponding five sub-stages of 10-word increments. As

discussed earlier, WCD learns the transitional probabilities

between co-occurring words and transforms these

probabilities into normalized vector representations for

word meanings. Because WCD relies on the use of lexical

contexts, the same word will have different representation

vectors at different stages as word contexts fill out with the

growing lexicon, resulting in representations that converge

with the growing vocabulary.

2.5. Network initialization and simulation parameters

Both the S-GMAP (word meaning) and the P-GMAP

(word phonology) in DevLex were initialized with 300

nodes, a number chosen heuristically to be large enough to

span the whole grid and support the finding of a 2D

manifold early on, but small enough to allow for node

recruitment given the lexicon size. The nodes were

randomly scattered on an underlying 50!50 grid for each

map. Both input and associative links were set to small

random numbers. During each lexical growth stage (i.e. 50,

100, and so on to 500), words entered the lexicon one by

one: at every iteration a word was picked from the pool—

the current vocabulary at the stage—according to its word

(token) frequency in the parental CHILDES corpus. Since

the word frequency distribution follows Zipf’s law (Zipf,

1932), we calculated the logarithms of these frequencies to

force a more even distribution of words in the input.

A set of six simulations was run with identical modeling

parameters. Some of the parameters are shown in Table 1.

GMAP mode coefficient modulates the transition from SOM

to ART mode. Its relative value (between 0 and 1) denotes

the switching moment from SOM to ART mode within each

sub-stage. Hence, DevLex spends first three stages
exclusively in SOM mode, followed by gradual transition

to ART mode during stages 4 (200 words) to 7 (350 words),

after which DevLex stays completely in ART mode. The

second parameter, neighborhood radius, sets the node

interaction range between the nodes during learning, and

its non-zero values at early stages were used to allow for

GMAP reorganization as new words come in. It becomes

zero during the transition to the ART mode and remains

zero thereafter. The next two parameters, q_sem and q_pho,

are the threshold distances that modulate the rate of node

recruitment in the semantic and phonological GMAPs. The

linear decrease during the first half was chosen to allow for

an initially lower node recruitment rate for both GMAPs.

Node recruitment starts at around 200 words, with low rates

until 250 words, followed by a faster increase until the end.

On average, each GMAP ended up having roughly twice as

many nodes (600) as when it began (300).5 Finally, each

stage was trained with the same number of 50 epochs, and

with a constant learning rate of 0.05 for input weights and

0.1 for associative links.

The parameters in Table 1 were chosen heuristically to

allow for the modeling of vocabulary development in terms

of (a) coarse map organization and reorganization during

SOM mode, (b) vocabulary spurt associated with initial

word confusions and later de-confusions during the

transition to ART mode, and (c) stabilized vocabulary

growth and convergence during ART mode.
3. Simulation results

All results reported below were based on the averages of

the six simulations with identical parameters as described in

Section 2.5.

Before presenting the simulation results, we briefly

discuss our choice of semantic input representations for the

network. In Section 2.2, we discussed two types of semantic

representations, the WCD-based co-occurrence results and

the WordNet-based semantic features, and hypothesized

that they could be combined to yield more accurate

representations of word meanings than the ones generated

by either the WCD or the WordNet method alone. To verify

this hypothesis, we used a simple, k-nearest neighbor
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(k-NN) classifier (Duda, Hart, & Stork, 2000) to determine

the existence of compact category clusters for the training

materials (the 500 toddler words from the CDI database). A

5-NN classifier was built for each word based on all

the remaining words in the considered lexicon. The label of

the test word was predicted according to the most

frequent label among the k nearest neighbors, that is, the

words being closest to the test word in input space. Ties in

prediction were broken randomly. The classification rate for

words in each of the 18 categories was evaluated against all

500 words.

Results from this k-NN analysis indicate that a combined

representation that incorporates both the WCD-based and the

WordNet-based features provides higher accuracy in classi-

fication for most of the original 18 categories in the CDI

database. Because the combined representation includes both

dynamic context features and static semantic features, it is no

surprise that it yields a better data structure than either type of

features used alone. In realistic language learning, this could

be thought of as having both the statistical information of the

sequential linguistic input and the perceptual information of

words as cues to word meanings. In what follows, therefore,

we report simulations based only on the combined represen-

tations as the semantic input.
3.1. Category emergence and reorganization

As discussed earlier, DevLex presents an emergentist

alternative to the nativist assumption that lexical categories
Fig. 4. Classification rates for four grammatical categories using a 5-NN classifier

the graphs correspond to the results of a 5-NN classification performed for the in

distortions in data structure due to network’s 2D mapping, and as shown, the am
are hardwired in the brain. Our simulations show that the

representation of linguistic categories can emerge in the

topology of the network as a natural outcome of the self-

organizing process in lexical learning. Using the k-NN

classifier as discussed above, we were able to determine if

major grammatical categories emerged in the network at

various points during training.

Fig. 4 depicts the representation of the four major

categories (nouns, verbs, adjectives, and closed-class

words) in terms of their compactness in the S-GMAP

space, computed by a 5-NN classifier. It can be seen that, by

the end of the training, the S-GMAP formed good

representations for all four categories. Except for nouns,

all the categories have shown some degree of development,

that is, moving from a less compact to a more compact

category (hence higher classification rates). The high

compactness of the noun category, starting at the beginning,

is possibly an artifact of the k-NN measure, due to the

overwhelming number of nouns at early stages of learning,

relative to other word classes (see Fig. 3 for the structure of

the input data and the ‘noun-bias’ discussed there). In

contrast to the nouns, closed-class words are poorly

classified early on because of their relatively late entry

into the lexicon (again see Fig. 3), and their classification

rate increased only toward the end. Moreover, nouns, verbs,

and adjectives formed compact clusters during the SOM

mode and were fine-tuned later when new words were added

to their existing coarse structure; by contrast, closed-class

words formed compact clusters only in the ART mode of
, evaluated at regular stages of 50-word increments in the S-GMAP. Dots in

put space, which can serve as a reference (the baseline) for the amount of

ount of distortions is small.



Fig. 5. S-GMAP reorganization as a function of vocabulary size, computed as the amount of word shifts in the map’s underlying grid. Each map was compared

with its predecessor at the previous stage (the index of x-axis refers to the successor), comparing the positions of the words common to both maps. As shown, all

categories underwent significant reorganization at initial stages of development when GMAPs were in the SOM mode. The zero reorganization of closed-class

words between 50- and 100-word stages was due to the absence of this category in the early vocabulary. High standard deviations at early stages indicate that

category reorganization was more variable as well as more flexible early on.
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the model when the vocabulary size reached 300–400.

Finally, the temporary decrease in accuracy for adjectives

during 100–150 words was due to the poor data structure in

the input (which can be seen in the dotted lines), and not due

to the inability of the S-GMAP learning—it is unclear,

however, why the meanings of adjectives are particularly

difficult to represent for this stage (but see Gasser & Smith,

1998, for an in-depth analysis of children’s late acquisition

of adjectives, as compared with nouns).

Category organization as well as category emergence is

the focus of our model, and we used a map reorganization

measure to monitor it explicitly. For any pair of two

adjacent stages (e.g. 100-word and 150-word stages), we

evaluated map reorganization for each major category as the

Euclidean distance of the same word in the two maps,

averaged over all words currently present in the category.

For example, in the two maps for 100 and 150 words, we

compared only the 100 words that were common to both

maps. Results of this procedure are shown in Fig. 5. They

show that all categories underwent significant

reorganization at initial stages of development when

GMAPs were in the SOM mode.6 The SOM-mode learning
6 As a reference, a completely random remapping of words could be

calculated as an average distance between two randomly chosen grid

positions in the map, yielding a considerably higher number that depends

on the grid size (50!50 in our simulations).
with non-zero neighborhood encouraged the network to

reorganize the map structure. This higher plasticity for

reorganization, on the other hand, leads to lower stability

initially in the map. The generally higher standard

deviations for early stages shown in Fig. 5 also indicate

that category reorganization was more variable as well as

more flexible early on. At later stages, however, map

reorganization gradually disappeared, and as new words

entered the lexicon they were simply added to the existing

structure of the network. Decreased word shifting at later

stages was further reinforced by the converging WCD-based

word representations towards the end of growth, which

implies that once the winner for a certain word was chosen,

there was no need to change it later. There is yet not much

empirical information about how children organize and

reorganize their word categories in the mental lexicon in the

fashion as we have described here, but this early-plasticity-

and-late-stability scenario would be consistent with the

standard view about language acquisition in many other

domains (Bates, 1999; Elman, 1993; see also Section 4).
3.2. Lexical confusion and naming deficit

The k-NN measure provides us with only a coarse picture

of how the lexical categories are distributed on the

S-GMAP. High classification rates for a given category

suggest that this category forms a compact cluster in



Fig. 6. Word confusion rates during early vocabulary growth. Frequent

confusions occur during initial map formation and map reorganization, but

then decrease as GMAPs gradually switch to ART mode. By 350 words in

the vocabulary, word confusion rate reached a minimum. Standard

deviations are not shown here as they were relatively small.

7 In our discussion of lexical density we are concerned with the

compactness of words in terms of semantic representations of the lexicon.

This contrasts with the tradition of spoken word recognition research,

where lexical neighborhoods and lexical density are defined by phonolo-

gical similarities of words; for example, bat, cat, hat, mat and pat form a

dense neighborhood of words, as opposed to cup and pup that share few

similarly sounding words.
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the map. However, this measure does not give us more fine-

grained information at the individual word level such as

how words are differentiated within each category. For

example, although Fig. 4 indicates that nouns formed

compact categories from almost the beginning, an

inspection of the individual nouns showed that many of

these items were confused with other items within the noun

category (that is, represented by the same nodes in the map).

Examination of this type of lexical confusion is important,

as empirical literature suggests that young children

experience temporary periods of confusion of word

uses, often resulting in naming errors (Bowerman, 1978;

Gerskoff-Stowe & Smith, 1997; see discussion in the

introduction). Word confusions at early stages have often

been linked to the so-called ‘vocabulary spurt’, a sudden and

rapid increase in the rate at which new words are produced

in children’s spontaneous speech. Although vocabulary

increase in our model is based on the CDI data and has no

such abrupt vocabulary spurt, it would still be informative to

see what types of confusion the network makes with

various words.

To monitor word confusion rates across categories in

DevLex, we used a set of four measures to quantify

the network’s representation accuracy, according to

Miikkulainen (1997). Two of these are accuracies of map

representations (semantic and phonological) that quantify

the proportion of words being uniquely represented in either

GMAP. For example, if car and truck are mapped onto the

same node in S-GMAP, this is interpreted as indicating that

the network cannot differentiate between these two

concepts. The other two measures are associations between

the two GMAPs, allowing for the modeling of comprehen-

sion (via phonology-to-semantics links) and production (via

semantics-to-phonology links). For example, if the node

with the highest activation in the S-GMAP is consistent with

the activated node in the P-GMAP (e.g. truck in S-GMAP

and /tr@k/in P-GMAP), this is interpreted as indicating that

the network has correctly named the concept in production.

Fig. 6 presents the results of the four measures. The

lower two curves were related to the individual maps and

the upper two curves related to the associations between the

maps and can be interpreted as production and

comprehension rates, respectively. Our analyses here

focus on the production errors although the model displayed

very similar comprehension profiles. As can be seen, the

SOM mode of the model produces coarse category

formation and reorganization, as discussed in Section 3.1,

and it was this mode that is associated with high confusion

rates. Word confusions started to decrease when GMAPs

gradually switched to the ART mode. The decrease of

confusion errors lagged behind for the associations between

the two maps as compared with individual maps, which

shows that the production and comprehension associations

required more time as they were trained by Hebbian

learning. Fig. 6 also shows that confusions occur for both

the map representations and the map associations, which
suggests that both lexical representations and form-meaning

associations are responsible for lexical confusions in

the model.

In addition to displaying lexical confusion, our model

lends itself nicely to explaining the effect of word density on

word confusion: most of the confusions in our model come

from densely populated areas in the map (with many words

in the neighborhood), which is consistent with predictions

based on studies of similarity neighborhood effects that

lexical access and recognition are more effortful and error-

prone when they are associated with higher lexical

neighborhood density (Charles-Luce & Luce, 1990).7

In the context of S-GMAP, a densely populated area can

be understood in terms of either a set of neighboring nodes,

or, more locally, within single nodes that serve as best

matching nodes for more than one word. In both cases, the

higher word density represented by these nodes resulted in

higher word confusion rates, as compared with words in

sparsely populated areas. Interestingly, word confusion

occurs more often for nouns than for the other major word

categories, especially in the early stages, because nouns are

more densely populated in the GMAP initially, due perhaps

to the early noun-bias in the CDI vocabulary. Other

categories, especially the closed-class words, might have

been more robustly represented in the GMAP due to low

density and are thus less susceptible to confusion.
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The higher the word density is, the more strongly words

are to compete with each other during lexical retrieval in

word production. This result would fit in well with the

arguments made by Gerskoff-Stowe and Smith (1997).

However, word density alone cannot explain the whole

story. When collapsed across categories, word density for

our training vocabulary was generally on the rise until it

plateaued at around 300 words (see Fig. 8 in Section 3.3).

Yet empirical data (and our Fig. 6) show that word

confusions are only temporary early on and would decrease

quickly. Thus, other factors needed to be considered in this

picture. One argument made by Bowerman (1978) regard-

ing children’s word confusions at a somewhat later stage is

that the recognition of shared meaning components of

words, or semantic relatedness, plays an important role

(see discussion in Section 1). Thus, we evaluated semantic

relatedness of confused words on a node-by-node basis.

For each ambiguous node we checked whether there existed

a dominant category, and found that more than half of the

category labels among the ambiguous nodes were identical.

When semantic relatedness was considered with respect to

the original 18 CDI sub-categories (see Section 2.4), we

observed that about 75% of all confused words were

semantically related at the beginning, going up to about

90% toward the end of vocabulary growth.

In terms of the model, the increasing profile of semantic

relatedness in word confusion is a direct consequence of the

topographic organization of the GMAP that attempts to map

similar words close to each other in the map. This type of

semantically motivated organization explains the child’s

inability to differentiate between two similar concepts, in

which case the child uses two word labels interchangeably

(hence the naming errors). The more related words children

have to learn within a given period, the more likely they will

experience representational confusion in an overloaded

lexical memory. Thus, in this view, semantically related, but

not unrelated, pairs of words are the sources of confusion in

lexical retrieval during children’s word production.

3.3. Age-of-acquisition (AoA) effects

Previous models using feed-forward neural networks

have shown that age-of-acquisition effects can arise

naturally in connectionist learning. AoA effects impose

significant constraints on connectionist models because of

their requirement on both plasticity and stability in learning

and representation, as discussed earlier. A connectionist

model has to, minimally, overcome catastrophic

interference to show AoA effects. The current architecture

of DevLex lends itself nicely to the modeling of AoA,

precisely because of its ability to deal with the plasticity-

stability problem, due to its use of the SOM and ART

modes.

Two conditions must be satisfied in our model before a

word is considered acquired: the word must have a resource

allocated in both GMAPs, and there must exist an
unambiguous link between form and meaning of that

word. Resource allocation occurs immediately for all new

words (ART was designed to allow fast assignment of

resources to new items), as long as GMAP has a sufficiently

low threshold distance (high vigilance parameter in ART).

Hence, the earlier an input word is presented to the GMAP,

the earlier it will have its representative unit in the GMAP,

due to the relatively lower threshold distance early on.

Because higher threshold distance leads to coarser

clustering (the same unit responds to more, mutually similar

words), the new pattern must be more dissimilar from all

existing patterns to be considered new and hence assigned a

new unit. As mentioned earlier, the threshold distance was

set to increase linearly with a growing lexicon in the first

half and then remained constant.

Whereas the resource allocation condition could be

satisfied immediately, the second condition requires more

learning time. An unambiguous link between the meaning

and the form (word production) requires training with

Hebbian learning on the units that are initially all connected

with one another across maps, and the gradual weight

changes by small amounts can be time-consuming.

However, the earlier a word enters the lexicon, the earlier

the link between its form and meaning may be established,

resulting in earlier acquisition of this word (i.e. ability to

produce the word correctly). Such gradual fine-tuning of

associative links between form and meaning could be

compared to a situation in realistic language learning

whereby children, having acquired some relevant lexical

semantic representations, have not firmly established the

links between forms and meanings (e.g. imaging a situation

in which the child calls both dog and cat with doggie). Such

lack of strong associative connections may result in retrieval

difficulties during the naming of objects (recall our early

discussion on lexical confusion).

Fig. 7 presents the picture of the time at which words

are acquired, as a function of the current vocabulary size.

Acquisition times were expressed in terms of current

vocabulary size, and were based on word production rates

(semantic-to-phonological association links, given that

most AoA studies have focused on production). It can

be seen that although the overall shape of word

development appeared curvilinear in Fig. 7, the data set

could be approximated by a positive regression line after

the vocabulary size reached 150 words. This means that

for most words after the 150-word mark, the earlier a

word entered the vocabulary learning pool, the earlier it

was likely to be acquired. Note that the 150-word mark

corresponds to the end of the SOM mode, where lexical

reorganization was more vibrant than the later periods of

learning in the ART mode.

Our model differs from previous connectionist networks

of AoA effects in several respects: (1) instead of using

arbitrary patterns of random bits, we used realistic words

that have phonological and semantic information as our

input patterns; (2) instead of dividing words into early



Fig. 7. Age of acquisition in the growing vocabulary as a function of the current vocabulary size, evaluated every 50 epochs.

Fig. 8. Average word density as a reflection of AoA, evaluated every 50

epochs on groups of most recent 50 words. Error bars represent the standard

errors of density for the given group.
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versus late learned groups, we examine the natural order of

learning in which words are acquired. In our model, the time

at which words enter training is naturally different for

different words (according to CDI); and (3) instead of

modeling AoA effects as the network’s ability to reconstruct

earlier presented patterns, we treat AoA as a natural

correlation of the time at which words are acquired and

the dynamic change that occurs to the vocabulary as a

whole. Thus, although all of the words in our training

vocabulary would probably be regarded as early learned

words in empirical studies, we think that there might be

changes in the structural properties of the vocabulary that

differentiate between words acquired at different times,

which our model can pick up as a function of learning the

vocabulary. Word density seems to be a good candidate in

this respect.

Fig. 8 shows AoA effects as a function of the density

of the words across stages of learning in our model.

Word density here is calculated as the number of words

mapped to the target node and all surrounding nodes

(within radius 1; see also discussion of word density in

Section 3.2). It can be seen that word density gradually

increases as learning progresses: in general, words were

less densely populated in the map early on, but they

became more densely populated with increasing vocabu-

lary size, a natural result of learning (although word

density could vary from category to category, as

discussed in Section 3.2 in connection with lexical

confusions). An interesting prediction of this pattern is

that words that are learned earlier should be more

resistant to confusion or noise/damage, because of

the relatively weaker competition among lexical items
in the nearest neighborhood. Such a prediction may be

empirically or computationally tested in future research.
4. General discussion

DevLex is the first full-scale SOM-based developmental

model of language acquisition. Our goal has been to provide

a cognitively plausible, linguistically scalable model to

account for lexical development in children. We wanted a

model that can capture important insights into mechanisms

underlying lexical development. We succeeded in
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constructing a model that allows for the representation of a

dynamically changing linguistic environment in language

acquisition. The model develops topographically organized

representations for linguistic categories over time, displays

lexical confusion as a function of word density and semantic

similarity, and shows AoA effects in the course of learning a

growing lexicon.

First, with regard to topographically organized

representations, our model has direct implications for

understanding the representation of linguistic category in

the brain. Cognitive neuroscientists have identified various

‘brain centers’ of language for nouns, verbs, tools, fruits,

animals, and so on. Their studies have often operated under

the assumption that the brain is a highly modularized

system, with different cognitive functions localized to

different cerebral regions, perhaps from the beginning (the

classical ‘modularity of mind’ hypothesis, Fodor, 1983).

Our DevLex model, however, speaks to a process

of ‘emergent organization’ through which localized

brain centers can arise as a function of the developmental

processes during ontogenesis (Elman et al., 1996;

MacWhinney, 2001b). Our simulation results show how

the organization of local maps can give rise to emergent

categories across stages of learning, with substantial early

plasticity and early competition for the organization and

reorganization of category members.

Second, with regard to lexical confusion in early

vocabulary learning, our simulations have allowed us to

identify a number of crucial factors that lead to lexical

confusions observed in early child language. The CDI

inventory includes the earliest words that children produce

and comprehend, and modeling with this vocabulary

permits us to see the early developmental characteristics

of the lexicon. For example, lexical confusion in DevLex is

directly related to how densely words are populated in the

GMAP, measured as the amount of words mapped onto the

nearest neighborhood of the target node. Interestingly,

lexical confusion occurs more often for nouns than for other

word categories, because nouns are more densely populated

in the GMAP. There is empirical evidence that the early

child English vocabulary is highly biased toward nouns

(Gentner, 1982), and hence nouns have a higher chance to

get confused with each other.

Not only the sheer number of nouns, but also the high

semantic similarities that hold between the words can cause

lexical confusions. Semantically motivated lexical con-

fusions and substitutions have been documented in

empirical research, as discussed earlier. The majority of

confused words in our model are those that are semantically

related. Thus, our model simulates word confusion as a

function of both word density and semantic similarity. In

addition, our model indicates that the sources of confusion

cannot be uniquely assigned to either lexical representations

or associations between form and meaning: it is reasonable

to think that both representations and associations

contribute to the early stages of lexical confusion, given
that semantically related words may be more difficult to

distinguish in the representation, and may also be more

difficult to retrieve as they compete for retrieval in particular

speech contexts.

Finally, with regard to the age-of-acquisition effects, our

model displays both plasticity in learning and stability in

representation: plasticity because of the use of SOM in

allowing for the organization and reorganization of new

words along with learned words, and stability because of the

adaptive learning of ART in preventing the learned structure

from being disrupted by new learning. The combination of

SOM and ART modes in our model represents two modes of

the learning dynamics that we think fit the realistic

language-learning scenario. Thus, age of acquisition in our

network shows up as a smooth function of the correlation

between the increasing vocabulary size and the learning

time. The effects of age of acquisition are reflected in adult

lexical processing speed in empirical studies and in

reconstruction rates in some connectionist networks, but

in our simulations this is reflected in the density of words

across stages of learning.

The ability of our model to capture lexical organization,

word confusion, and age of acquisition in formal mechan-

isms attests to the utility of self-organizing neural networks

as psychologically and biologically plausible models of

language acquisition. The mental representation and

acquisition of words has been a focus of much

psycholinguistic research, and our model demonstrates the

emergence and organization of the lexicon as a self-

organizing process. The model’s ability to capture empirical

phenomena also lends itself to many interesting predictions

that may be evaluated against future empirical findings,

such as the relationship between lexical density and lexical

confusion (the more densely words are populated in the

representation, the more likely they are to be confused by

children), and lexical density and resistance to damage

(early learned words have lower density and therefore are

less susceptible to damage or noise).

In a review article on brain plasticity and language

development, Bates (1999) laid out a proposal for early

language development in which she highlighted three

important features of the developmental process: early

plasticity, early competition, and experience-dependent

synaptic changes. Our model can be seen as an implemen-

tation of these features in a computationally concrete form.

Our model displays significant early plasticity in the

emergent organization of linguistic categories, and

significant early competition in lexical representation and

retrieval, especially for words with high-density neighbors.

Moreover, the model’s ability to learn a growing lexicon

and show age-of-acquisition effects is a direct function of

the experience-dependent (input-dependent) synaptic

changes that are part of the learning dynamics of the self-

organizing system. The learning dynamics of DevLex, in

particular, early plasticity and late stability, match up well

with what we know about general principles of cognitive
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development and language development (Bates, 1999;

Bates & Elman, 1993; Elman et al., 1996). And finally,

the topographically organized maps as used in SOM and our

DevLex model may have significant neural underpinnings

for the representation and development of the lexicon in the

brain (Miikkulainen, 1993, 1997; Spitzer, 1999).
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Appendix A. Word co-occurrence detector (WCD)

Assume that at time t the current word is i(iZ1,.,n) and

is represented by a localist vector oZ[o1,o2,.,oN] in layer

A (see Fig. A1). The previous word j is represented by a

localist vector cZ[c1, c2,.,cN] in layer B. Link lij learns to

approximate P(jtK1jit), i.e. the probability that the word j

precedes word i. Likewise, link rji learns to approximate

P(itjjtK1), i.e. the probability that the word i follows j.

Learning follows the Hebbian rule of the form:

Dlt
ij Z bot

iðc
t
j K ltijÞ and Drt

ji Z bct
jðo

t
i Krt

jiÞ (A1)
Fig. A1. A diagrammatic sketch of WCD. The solid links between layers of

nodes represent activity propagation (via full connectivity), and dotted lines

represent pattern transport (via one-to-one links). Layers A and B hold

localist representations, whereas layers A 0 and B 0 hold distributed

representations.
where 0!b!1. Word i is then characterized by a

concatenation of vectors

li Z ½li1; li2;.; liN� and ri Z ½r1i; r2i;.; rNi�

As these values are stored in weight matrices L and R

between layers A and B, a sequence of operations is

required at each iteration to transport weights to unit

activations qL
i and qR

i in layers A 0 and B 0, respectively, to

make them available for further processing. Each operation

falls into one of the three categories: pattern transport

(denoted by an arrow), activity propagation, and weight

adaptation. All units have linear activation functions. The

whole sequence consists of the following steps: (1) transport

previous word wtK1: A/B, (2) pick up (transport) a new

word wt from the pool: P/A, (3) adapt l and r links

(Eq. (A1)), (4) A/B, (5) propagate otZLct to layer A, (6)

A/A 0 yielding qL
i ; (7) pick up wt again: P/A, (8)

propagate ctZRot to layer B, (9) B/B 0 yielding qR
i ; (10)

propagate (and process) qi Z ½qL
i ;q

R
i � further up (random

mapping, etc.), (11) go to step 1.

Fig. A1 illustrates WCD diagrammatically.
Appendix B. Random mapping

Random mapping reduces the vectors to lower, fixed

dimensions (DZ100 in our case) and can preserve the data

structure with high accuracy (as long as D is sufficiently

high). Random mapping as a linear transformation is very

useful because (1) it does not need to be learned (the

mapping coefficients are fixed), and (2) it allows a consistent

and on-the-fly transformation with dimensionality reduction

(2N/D).

Generally, in the random mapping method the original

data vector, x2R
N is multiplied by a random

mapping matrix Z, resulting in a dimension-reduced vector,

x 0ZZx2R
D. Z consists of random values and the

Euclidean length of each column has been normalized to

unity. If we denote the Euclidean norm in k-dimensional

space as jj$jjk, then it can be proven (see Ritter & Kohonen,

1989) that

hðkx0 Ky0k2
D Kkx Kyk2

NÞ
2
i%

2

D
kx Kyk4

N

where h i stands for the average over all possible pairs of

vectors x and y. In other words, the relative distortion of

vectors x and y under mapping Z will be small, if the output

dimension D is large enough. Hence, we can expect that Z

will preserve the data structure with higher accuracy for

higher D.
Appendix C. The DRP procedure

The Distance Ratio Preservation (DRP) procedure is

used to maintain topographic 2D order of nodes throughout

http://mailto:pli@richmond.edu
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GMAP growth. Its design originated from the following

considerations. If the input is considered to be a new

word (i.e. it is not sufficiently similar to any existing

node, compared to the current threshold), the new word’s

winner (a new node) will be recruited in the GMAP. It

will be the node that maximally preserves the ratio of

distances of the new word with three nearest neighbors

in the input space. The intuitive motivation behind this

procedure is to transfer spatial relations between a new

word and its nearest neighbors from input (feature) space

to output (GMAP) space. The DRP procedure is actually

the results of solving the set of three nonlinear equations,

and it works well in most cases, except when the

positions of three nearest neighbors in the GMAP are

highly linearly dependent. The new node is connected by

links to the 3 nearest neighbors to become incorporated

into the graph. Also, the strength of all edges in GMAP

is decreased by a constant amount. Edges with negative

weight are deleted.

Algorithmically, the DRP procedure involves

the following steps:
1.
 Find 3 nearest neighbors c1, c2 and c3 to x such that

dc1%dc2%dc3, where dcZjjxKmcjj and for all

k2A\{c1,c2,c3}: dc3%dk.
2.
 If c1, c2 and c3 are highly linearly dependent (O0.95),

skip DRP procedure.
3.
 Given the 2D map coordinates rci of nodes ci, find the

map coordinates rq for the new node q that will yield an

optimal solution (Levenberg–Marquardt algorithm is

used) for the set of 3 equations of the form jjrqKrcjjZ
z$dc, for c2{c1,c2,c3}.
4.
 Round rq to integers. If this position is already taken,

randomly choose one position from among the 8

neighbors in the grid. If all positions are taken, skip the

DRP procedure.
5.
 Connect q with ci: CZCg{(c1,q), (c2,q), (c3,q)},

and also connect nearest neighbors with each other:

CZCg{(c1,c2), (c1,c3), (c2,c3)}.
6.
 Set mqZx.
7.
 Decrease the strength of all connections in C by constant

amount DcZ1/(100n), where n is the current lexicon

size. If there are connections whose strength falls below

zero, delete them. Division coefficient 100 was found

heuristically.
Appendix D. A run-down Pseudocode for DevLex

Initialization
Initialize P-GMAP and S-GMAP with 300 nodes each,

randomly scattered over a 50!50 grid. Connect nodes

within each map to make a 2D graph. Connect both

GMAPs with unidirectional links.
Training
For each stage S

Get current word meanings to the pool

Set NBHD radius, qsem(S), qpho(S)

For each substage

Set SOM mode

/* within each substage, parameter k linearly runs

from 0 to 1 */

For each iteration

If kOGMAP-mode-coef(S)

Set ART mode

End If
Choose a word from the pool (represented by

vectors xpho, xsem)

Find best matching units (bmu) in both GMAPs

If SOM mode

adapt weights within eighborhood radius in

both GMAPs

adapt associative weights between GMAPs

End If
If ART mode

If jjxphoKwphoKbmujjOqpho(S)

Apply DRP procedure for phonological

map

End If

If jjxsemKwsemKbmujjOqsem(S)

Apply DRP procedure for semantic map

End If
Decrease the strength of all edges in both

GMAPs.

Remove edges with non-positive strength.

End If

Update associative links

End For

End For
End For
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