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Abstract 
In this paper we present two connectionist models of reading, 
using a parallel distributed processing framework that has been 
applied to English, to examine the extent to which such models 
can also account for developmental performance in Chinese. 
Simulation 1 was trained to map from orthography to 
phonology for a large corpus of stimuli, and simulates the 
frequency, regularity, consistency effects and interactions 
among them. Simulation 2 was trained to map among spelling, 
meaning, and sound for a smaller set of items, and captures 
basic effects of orthographic transparency and family size. 
Although the computational models used here are very similar 
to the English models, a very different developmental pattern 
emerged, such that mappings from orthography to semantics 
were learned more rapidly than mappings from orthography to 
phonology. The results show how qualitative differences in the 
development of reading skill across writing systems can arise 
from the functioning of the same general learning mechanisms. 

Introduction 
Over the past three decades, computational models have 
become increasingly sophisticated in accounting for a broad 
range of phenomena and specifying the hypothetical 
mechanisms underlying skilled reading and its acquisition. 
However, because the vast majority of this work has been 
done in English, questions remain about the generality of 
these models. For example, the DRC model of reading 
English contains specific assumptions (e.g., about how 
conflicting rules at different grapheme sizes are handled) 
that are unlikely to generalize to transparent languages 
(Coltheart, Rastle, Perry, Langdon, & Ziegler, 2001). 
Furthermore, it is not clear how the architecture of that 
model would handle a language in which there are no 
regularities that can readily be identified as "rules," such as 
Chinese. On the other hand, at least one computational 
model of Chinese reading acquisition involves a set of 
highly language-specific processes for identifying specific 
constituents of characters (Xing, Shu, & Li, 2002, 2004). 

 
Our approach is informed by the "triangle" model of 

reading, developed by Seidenberg & McClelland (1989; see 
also Plaut, McClelland, Seidenberg, & Patterson, 1996; 
Harm & Seidenberg, 1999; Harm & Seidenberg, 2004). This 
series of models treats reading as a constraint satisfaction 
problem, and provides the basis for a consideration of how 
insights from models developed to explain reading in English 
can be brought to bear on a very different reading system – 
Chinese. Both English and Chinese writing systems contain 
multiple probabilistic cues to pronunciation that contribute to 
the learning of spelling-to-sound mappings. Whereas in 
English, these constraints are relatively few, and highly 
consistent – so that they are often roughly characterized as 
mappings from individual letters to individual speech sounds 
– in Chinese, mappings from spelling to sound tend to be less 
consistent, and depend on a much larger number of 
orthographic constituents called "phonetic radicals", part of a 
character that makes a basic morpheme in this language. In 
Simulation 1, we examine the effects of regularity, 
consistency, and frequency in a version of the triangle model 
adapted to Chinese characters. 

 
An additional factor that distinguishes Chinese from 

English (and most other writing systems) is that Chinese 
characters typically contain a "semantic radical" that 
provides some probabilistic information that aids in the 
translation from orthography to semantics. In alphabetic 
languages such as English, monosyllables rarely contain 
sub-lexical information about meaning. An exception to this 
is inflected forms, e.g., "walk," "walks," and "walked," which 
are semantically related in predictable ways. Interestingly, 
the triangle model picks up on these regularities in English 
(Harm & Seidenberg, 2004), because the associative learning 
mechanism used in the triangle model is highly sensitive to 
similarity. Thus, in a language like Chinese, wherein many 
characters contain probabilistic cues to meaning, we would 
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expect effects analogous to consistency effects in mapping 
from spelling-to-sound to arise in spelling-to-meaning 
mappings.  

 
Furthermore, because these models are inherently 

developmental, they provide an opportunity to examine the 
influence of the statistical regularities in the writing system 
on learning to read. A number of studies have shown that 
spelling-to-meaning consistency (or “transparency”) plays a 
role in children's reading from very early on in Chinese 
(McBride-Chang, Shu, Zhou, Wat, & Wagner, 2003; Shu & 
Anderson, 1997), and that a factor called "morphological 
awareness" – essentially the ability to generalize based on 
sub-lexical semantics – is a strong predictor of learning to 
read (McBride-Chang et al., 2005; Shu & Anderson, 1997; 
Shu, Anderson, & Zhang, 1995). In Simulation 2, we explore 
these phenomena in a model that includes mappings among 
orthography, phonology, and semantics.  

A Brief Primer on Chinese Reading  
In modern Chinese, nearly 90% of characters are 

“phonograms,” which consist of two components (radicals). 
The semantic radical provides information about the meaning 
of the character, and a phonetic radical indicates the 
character's pronunciation. These radicals often also appear by 
themselves as “simple words” (i.e., mono-morphemic 
words). For example, the word (“ ”huang1) also appears in 
a “family” of words (“ , , , ”). When a phonogram’s 
pronunciation matches its phonetic radical, it is called 
“regular.” Families in which all the phonograms match in 
pronunciation are called “consistent.”  

For most families, however, the pronunciation of at least 
some of the family members differs from the pronunciation 
of the phonetic, such as “ /tai/, /dai/, /yi/, /tai/, 

/chi/”. All phonograms in such a family are called 
“inconsistent,” and those particular phonograms that do not 
match the phonetic are called “irregular.” 

Research on Chinese has revealed both regularity and 
consistency effects that interact with frequency. Seidenberg 
(1985) found that phonograms whose pronunciations 
differed from the pronunciation of their phonetic radical were 
named more slowly and less accurately than “regular” 
characters. Consistency effects have also been observed in 
single character naming, such that items from inconsistent 
families are named more slowly than consistent characters 
(Fang, Horng, & Tzeng, 1986). A number of studies have 
now compared three types of stimuli: regular-consistent 
(R-C), regular-inconsistent (R-I) and irregular-inconsistent 
(I-I), (Hue, 1992; Peng & Yang, 1997; Peng, Yang, & Chen, 
1994). These studies found both a consistency effect, and a 
regularity effect, such that I-I items were read more slowly 
than either R-C or R-I items – a finding which may provide a 
challenge to a constraint-based model.  
Semantic radicals also appear in “families” that vary both 

in the number of items in which they occur (“family size”) 
and in the consistency with which they map on to a 
particular meaning (“transparency”). For example, the 
radical for water ( ) appears in many phonograms that are 
related to water ( , lake, , river, , thirsty, , swim), 

which are transparent, but it can also appear in phonograms 
that are not ( , law, , negotiate), which are opaque. This 
is a unique feature of the Chinese writing system – it 
encodes probabilistic information about semantics at the 
sub-lexical level. In Simulation 2, we will consider how this 
property of the writing system influences both skilled 
reading and the acquisition of reading ability. 

For more detailed introductions to characters, reading, and 
reading acquisition in Chinese, consult Honorof and Feldman 
(2006), Perfetti and Liu (2006), Shu and Wu (2006), and 
other chapters in Li, Tan, Bates, and Tzeng (2006). 
 

 

Simulation 1: Mapping from Orthography 
to Phonology 

Architecture 
The architecture of the reading model is similar to a 

specific model previously implemented in English to account 
for mappings between orthography and phonology model 
(Harm & Seidenberg, 1999). The input layer consists of 270 
orthographic units, fully connected to an intermediate level 
of 200 hidden units, which in turn were fully connected to 
output representation, which was composed of 92 
phonological units and 50 cleanup units to create a 
phonological attractor network. The phonological layer was 
also fully connected to itself. 

 
Figure 1: Architecture of Model 1 

 
The orthographic representation is based on a linguistic 

description of Chinese orthography including radicals, 
number of strokes and radical position (for details see Xing et 
al., 2004). The phonological representation includes five 
slots: one onset slot, three rime slots, and a fifth slot for tone. 
The rime was divided into a “medial,” usually consisting of a 
glide or approximant, a “nucleus,” which is always a vowel, 
and a “coda” which can either be a nasal (/n/ or /N/) or the 
second vowel of a diphthong. This slot system captures 
similarities such as the fact that /tSwaN3/ (“ ”) and /ba1/ 
(“ ”) share a nuclear vowel, despite having very different 
syllable structures. Each phoneme was represented using a 
vector of 22 real-valued units, each of which corresponds to a 
phonetic feature. Including 4 units for tone, there are in total 
92 units for each Chinese syllable representation. 
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Training 
A set of 4468 items from the Modern Chinese Frequency 

Dictionary (1986) was used to train the model (one 
character was eliminated because there is no orthographic 
representation for characters with more than 7 radicals). 
Frequency counts from the corpus were transformed into a 
probability of presentation by a square root compression 
(Plaut, McClelland, Seidenberg, & Patterson, 1996). 

Following Harm & Seidenberg (1999), we first pretrained 
the phonological attractor model, and then trained the full 
reading model on the mapping from orthography to 
phonology. The continuous recurrent back-propagation 
algorithm (Pearlmutter, 1995) was used, with online 
learning. A learning rate of 0.005 and momentum of 0.9 were 
used. On each trial, a character was selected and the 
orthographic units were clamped with the pattern 
corresponding to the spelling of the word for 12 time ticks. 
Error computed at the phonological layer was computed from 
5-12 time ticks and back propagated to update the connection 
weights. The model was trained for 3 million trials. 

Testing 
120 phonograms were used to test the model’s 

performance. Three types of phonograms were selected: 
Regular Consistent (R-C), Regular Inconsistent (R-I) and 
Irregular Inconsistent (I-I) items. For each type, we selected 
20 high frequency (565 per million) and 20 low frequency 
(10 per million) items. The number of strokes and radicals 
was matched across conditions. Naming accuracy and sum 
squared error were computed to test the model’s 
performance. The model’s output was determined by a 
winner-take-all mechanism based on the Euclidean distance 
between the model’s output and all possible phonemes in the 
coding scheme. The sum squared error (SSE) was computed 
from the model’s output at the last time tick by taking the 
square of the difference between the model’s phonological 
output for each unit and the target output. 

Results 
After 3 millions trials of training, the model can name 

86.92% items in the training set accurately. Most of error 
items (86.3%) are very low frequency characters (no more 
than 10 per million) and for those items, adults typically 
have difficulty naming. Out of 120 testing items, 118 
(98.33%) items were correctly named. Two low frequency 
irregular-inconsistent items were named incorrectly. In 
training, high frequency items were learned most rapidly, and 
show no effect of regularity or consistency. Among 
low-frequency items, R-C items were learned faster than R-I 
items, which were in turn learned faster than I-I items (Figure 
2). 
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Figure 2: Pattern of SSE over 3 million training trials 

(Simulation 1) 
 

Analysis of the model at the end of training reveals an 
interaction between frequency and type typical of the human 
data (Figure 3, top). High frequency items have a lower SSE 
than low frequency items, F (1,114) =35.65, p<0.001. There 
is also a significant effect of the interaction between 
frequency and type, F (2,114) =3.93, p=0.022. Whereas 
there was no effect of type for high frequency items, F (2, 
115) <1, low-frequency items demonstrated significant type 
effects, F (2,115) =6.74, p=0.002. R-C items had a lower 
SSE than R-I items, and R-I items were in turn read more 
easily than I-I items. 
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Figure 3: Effects of frequency and type: Simulation 1(top) 

and adult experiment (down) 

Adult Experiment: Naming Latencies 
We tested 24 graduate students from Beijing Normal 

University in a naming task with the same 120 items, using 
the DMDX software. In each trial, a fixation cross “+” was 
presented for 300ms, followed by a 300ms blank and then a 
Chinese character for 400ms presented in black on white 
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background. An Inter-trail Intervals of 2000ms separated 
each trial. The results are consistent with previous studies of 
the impact of type (R-C, R-I, I-I) on naming, and with the 
predictions of the model, as shown in Figure 3(lower panel). 
A main effect of frequency was observed, F (1, 19) =43.84, 
p<0.001), as well as an interaction between frequency and 
type, F (1, 19) =12.24, p<0.01.  

Discussion  
Two critical results emerged from the orthography to 

phonology model. First, we demonstrate that a model with 
essentially the same architecture and learning rules used to 
study reading in English can in fact learn to map from 
spelling to sound for over 4000 Chinese characters. Previous 
models (Chen & Peng, 1994; Perfetti, Liu, & Tan, 2005; 
Perfetti & Liu, 2006; Xing, Shu, & Li, 2004) of Chinese 
reading have used much smaller training corpora, and did not 
address consistency effects (Chen & Peng, 1994; Hsiao & 
Shillcock, 2004, 2005). Our model successfully simulates a 
central result in the study of Chinese character reading: the 
interaction of regularity and consistency with frequency. 
Critically, this was done using items that produce the same 
pattern of effects in human subjects.  

 
Although the model does not encode any rules, nor indeed 

does it treat phonetic radicals as at all “special,” it does 
produce regularity and consistency effects, demonstrating 
that these effects do not depend on literal representations of 
rules. Finally, the developmental trajectory of the effects of 
regularity and consistency are correctly simulated. In both 
humans and the model, both regularity and consistency 
effects are observed throughout development (Yang & Peng, 
1997). 

Simulation 2: Triangle reading model 
 
A major feature of the Chinese orthography is that single 

characters encode probabilistic cues to meaning. In 
Simulation 2, we add a semantic network to the model and 
examine the development of mappings among spelling, 
meaning, and sound. 

Architecture 
We scaled down the architecture of Simulation 1 (because 

of the smaller training set, see “Training”), and added a 
semantic attractor layer, which had full feed-forward 
connections from orthography (mediated by 100 hidden 
units), bidirectional connections with phonology (mediated 
by 100 hidden units) and a cleanup layer of 50 units. 
Semantic layer consists of 246 units. 

  

Training 
The model was trained on 103 phonograms, selected from 6 
semantic radical families (3 large and 3 small families), 
including both transparent and opaque phonograms. The 
same orthographic and phonological representations were 
used as in Simulation 1. For semantic representations, we 

took the hierarchical feature trees from HowNet (Dong, 
2000; Liu & Li, 2002), a Chinese project similar to WordNet 
(Fellbaum, 1998; Miller, 1990) and “flattened” them into 
vectors (following Harm & Seidenberg, 2004). Both the 
semantic and phonological layers were pretrained (both with 
100K trials) to simulate early experience, first separately, 
and then in 400K trails of “speaking” (mapping semantics to 
phonology) and 400K trails of “hearing” (mapping 
phonology to semantics) tasks before being trained on the 
main task of reading aloud. When the reading model was 
trained, the weights in pretrained task were frozen. Items 
were presented to the network according to the same online 
learning scheme as before with the same frequency 
distributions. Error signals were provided for both the 
phonological and semantic representations of each item on 
each trial.  

Testing 
After 150K trials, testing was carried out as for Simulation 

1, with the addition that the “output” of the model was read 
from both phonology and semantics. From 103 items, we 
selected 50 items (25 transparent and 25 opaque items) to 
test the semantic transparency effect. We also selected 46 
items (23 from large families and 23 from small families) to 
test the family size effect. Semantic transparency was 
defined according to the Elementary School Textbooks 
Corpus (Hua Shu, Chen, Anderson, Wu, & Xuan, 2003).  
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Figure 4: Learning in Simulation 2(top) and in the Harm & 

Seidenberg (2004) model (bottom). 

Results 
Figure 4 shows the model’s accuracy over time for 

mapping of orthography onto the semantic and phonological 
layers. Of particular interest is the comparison of the Chinese 
model (Figure 4, top) to the English model (Figure 4, 
bottom): whereas English monosyllables contain very little 
sub-lexical semantic information, Chinese characters contain 
probabilistic cues to meaning. As a result, spelling to 
meaning is learned more rapidly than spelling to sound.  
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Figure 5: Semantic transparency and Family size effect 
 

Furthermore, as shown in Figure 5, the speed of learning – 
and efficiency of skilled processing – for this mapping is 
influenced by both transparency and family size. Items with 
highly consistent mappings between spelling and meaning 
are learned more rapidly than items with inconsistent 
mappings, and items within larger “families” are learned 
more rapidly than those that share structure with few other 
items in the training set. 

Discussion 
Our preliminary results from this model concern the 

development of mapping from spelling to sound and spelling 
to meaning over time. Whereas in English, the development 
of spelling to sound occurs earlier and more rapidly than the 
development of spelling to meaning, in Chinese, this pattern 
is reversed, as mappings from spelling to meaning are 
learned more readily than spelling-to-sound mappings. This 
cross-linguistic difference, we hypothesize, is due to the 
language-specific properties of the English versus Chinese 
orthography-to-meaning relationships: whereas the Chinese 
orthography contains sub-lexical units that prompt lexical 
meaning, the English orthography contains no such 
information. 

 

General Discussion 
In this study we present a large-scale connectionist model 

of Chinese reading based on the triangle model that has been 
successfully applied to account for English reading. 
Simulation 1 was trained to map orthography to phonology 

based on a large corpus, in which effects of frequency, 
regularity, consistency and their interactions were modeled. 
Simulation 2 was trained to map spelling, meaning, and 
sound for a smaller set of items, in which effects of 
orthographic transparency and family size were modeled. 
The model can explain a number of interesting empirical 
phenomena in the acquisition and skilled use of reading 
ability in Chinese. Furthermore, the same basic 
computational principles can explain effects in both the 
mapping from spelling to sound and the mapping from 
spelling to meaning. These results suggest that the 
differential development of reading skills across languages 
may be driven by the statistical regularities particular to each 
writing system. They demonstrate how qualitative 
differences in the development of reading skills can arise 
from the functioning of the same general learning 
mechanisms. 
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