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1. Introduction

The representation of language has been traditionally considered as a construction
out of basic structural building blocks in the form of symbols and rules. This
approach in general looks at linguistic representations statically. A contrasting
approach, in the spirit of recent developments in connectionist networks and
statistical learning, attempts to capture linguistic representations dynamically. It
considers linguistic representations as emergent properties that evolve out of a
continuously developing and adapting system. A shortcut to the understanding of
this approach might come from the following example. Structured, rule-like
representations in a connectionist network can emerge in much the same way as a
hexagonal structure emerges from the honeycomb: every honeybee packs a given
amount of honey to the honeycomb from multiple directions, but no honeybee has
a grand planning for the hexagonal structure (Bates, 1984).1 In this paper, I
provide such an account of the emergence of semantic representations, in
connection with morphological learning in language acquisition.

Lexical semantics and its acquisition by children has been a hotly debated
issue in the last thirty years. Until recently, most researchers in this domain have
thought that there is a fixed set of conceptual and semantic properties associated
with each lexical item, and that the child’s task is to acquire the necessary
conceptual frameworks and the semantic properties. Recent computational models
of language processing suggest that lexical semantics may be emergent properties,
in particular, that lexical categories can be acquired by the computation of
statistical regularities inherent in the input data. These models are in many ways
consistent with the empirical approach of distributional analysis (dating back to
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structural linguistics; Saussure, 1916) that emphasizes the child’s ability to
analyze the linguistic input (e.g., Maratsos & Chalkley, 1980). They can be
classified roughly into two categories. First, proposals from statistical analyses of
large-scale text corpora indicate that lexical-semantic representations may emerge
from multiple contextual and lexical co-occurrence constraints in a high-
dimensional space. Second, connectionist (or neural network) models indicate that
lexical-semantic structures can emerge from statistical learning of form-form and
form-meaning mappings. In what follows, I will briefly consider both types of
models, but the focus of this chapter will be on the second.2

High-dimensional semantic space and lexical representation

There have been a number of proposals that high-dimensional semantic space can
provide accurate and faithful representations of lexical semantics through multiple
contextual or lexical co-occurrence constraints in large text corpora. Two models
have emerged most prominently in the last few years: the HAL model (Hyperspace
Analogue to Language), advocated by Burgess and Lund (1997), and Lund and
Burgess (1996); and the LSA model (Latent Semantic Analysis), developed by
Landauer and Dumais (1997), and Landauer, Foltz, and Laham (1998). These two
models are highly compatible with each other, although the specific methods used
are different. In the following, I will focus on the HAL model as our research has
linked this model specifically to children’s acquisition of lexical semantics.

According to HAL, the meaning and function of a given word are determined by
lexical co-occurrence constraints in a high-dimensional input space, that is, by
what items may precede a word and what may follow it, and how often they do
so. HAL focuses on global rather than local lexical co-occurrences: A word is
anchored with reference not only to other words immediately preceding or
following it, but also to words that are further away from it in a variable co-
occurrence window, with each slot (occurrence of a word) in the window acting as
a constraint dimension to define the meaning and function of the target word.

The example in Table 1 illustrates the notion of global lexical co-occurrence
more clearly. It shows a matrix using a 5-word moving window for just one
sentence (the horse raced past the barn). Within this five-word window, co-
occurrence values are inversely proportional to the number of words separating a
specific pair of words. A word pair separated by a four-word gap, for instance,
would gain a co-occurrence strength of 1, while the same pair appearing adjacently
would receive an increment of 5. The product of this procedure is an N-by-N
matrix, where N is the number of words in the vocabulary being considered.
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barn horse past raced  the

barn 2 4 3 6
horse 5
past 4 5 3

raced 5 4
the 3 5 4 2

Table 1: Global Co-occurrence Matrix for the Sentence, The horse raced past the barn. The
values in the matrix rows represent co-occurrence values for words that preceded the
word (row label). Columns represent co-occurrence values for words following the
word (column label). Cells containing zeroes were left empty in this table. See
Burgess and Lund (1997). Reproduced with authors’ permission.

This matrix illustrates how the matrix acquires information about meaning.
Consider, for example, the word barn. The word barn is the last word of the
sentence and is preceded by the word the twice. The row for barn encodes
preceding information that co-occurs with barn. The occurrence of the word the
just prior to the word barn gets a co-occurrence weight of 5 since there are no
intervening items. The first occurrence of the in the sentence gets a co-occurrence
weight of 1 since there are four intervening words. Adding the 5 and the 1 results
in a value of 6 recorded in that cell. A word meaning vector is formed by
concatenating the row and column values for the lexical item. Of course, not all
vector values or elements contribute equally to the meaning representation. The
most appropriate elements are those that contribute most to the contextual
meaning and this is determined by identifying which vector elements have the
greatest contextual diversity (see Lund & Burgess, 1996, for details). It is this
more complex pattern of co-occurrence, which is referred to as global lexical co-
occurrence that contributes to the richness of meaning. In short, global lexical co-
occurrence is a measure of a word’s total experience in the context of other words.
The meanings of a word, in this perspective, emerge from multiple constraints in a
high-dimensional space of language use.

Although models like HAL are not originally designed for language acquisition,
they have significant implications for the acquisition of word meanings. Redington,
Chater, and Finch (1998) used a similar method as HAL to capture lexical syntactic
categories in child language. In another study, Li, Burgess, and Lund (2000)
applied the HAL method to the analysis of parental speech in the CHILDES database
(Child Language Database Exchange System; see MacWhinney 2000, for a
description of the database). We analyzed 3.8 million words from the speeches of
parents and caregivers addressed to children, and found that a reasonable size of
speech corpus (e.g., 3.8 million words) with a reasonable amount of co-occurrence
constraints (e.g., 50 co-occurrence elements) can yield accurate and faithful
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semantic representations of English words.3 Our results suggest that young
children can learn word meanings by exploiting the considerable amount of
contextual information in the input to compute multiple higher-order lexical
constraints. This approach relies on a few simple assumptions about what the
learner does. One important assumption is that the learner has the ability to track
continuous speech with some limitation on working memory, which can be
modeled with a weighted moving window of a variable size; another assumption is
that the learner is sensitive to lexical co-occurrences during language processing.
Such statistical abilities seem to be readily available to the child at a very early age,
as recent studies of statistical learning in infants have revealed (Saffran, Aslin, &
Newport, 1996). In short, global lexical co-occurrences can provide useful and
powerful cues to the young child in the acquisition of word meanings.

Emergent semantic structures in connectionist networks

A second set of models, consistent and complimentary with the computational
approach discussed above, are the connectionist models of language processing and
language learning. Recent years have seen rapidly developing interests in the
application of connectionist models to the study of language acquisition (see
Elman, Bates, Johnson, Karmiloff-Smith, Parisi, & Plunkett, 1996; Klahr &
MacWhinney, 1998 for overview). This interest dates back to Rumelhart and
McClelland’s (1986) connectionist model of the learning of the English past tense
and the debates thereafter (MacWhinney & Leinbach, 1991; Pinker, 1991, 1999;
Pinker & Prince, 1988; Plunkett & Marchman, 1991, 1993; Seidenberg, 1997).
Connectionist models rely on the use of a large number of connected micro-
processing units (called ‘nodes’ or ‘neurons’) that activate in parallel and adjust
weights of connections between one another through learning and processing. Two
key assumptions of these networks have to do with (a) representation –
knowledge is represented as patterns of activation distributed across the
processing units, and (b) learning – new knowledge is formed through the
adaptation of the strengths or weights of connections that hold among the
processing units. These assumptions differ from traditional cognitive assumptions
about knowledge representation that involves discrete symbolic representations of
concepts, categories, and grammatical rules. With regard to language acquisition,
advocates of connectionism argue that linguistic representations (of the lexicon,
morphology, and grammar) are “emergent properties” due to the interaction of the
processing units with the linguistic environment in the form-meaning mapping
process. This view contrasts with the traditional psycholinguistic approaches that
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emphasize the mental representation of rules and the innateness of grammatical
and semantic categories.

Connectionist principles of distributed representation, weight adjustment, and
nonlinear learning provide a mechanistic account of how syntactic and semantic
structures can emerge out of learning. For example, Elman (1990, 1995) showed
that a simple recurrent network is able to derive internal representations of
semantic as well as syntactic categories in a task of predicting the next word in the
sentence. Lexical categories such as nouns and verbs, animate and inanimate, and
human and animals emerge clearly in the network’s hidden-unit representations
after the network has been trained to map the current word in the input stream to
the next word. What the network does is similar to the process of detecting lexical
co-occurrence constraints in the input (as does the HAL model). Note that both
Elman’s network and the HAL method can be likened to the “distributional
analysis” technique used by structural linguistics (Bensch, 1991), although
structural linguistics did not have today’s powerful statistical machinery and
computational tools.

Li (1993) and Li and MacWhinney (1996) discussed more explicitly how a
connectionist network can develop internal representations of semantic structures.
Using the acquisition of the English reversive prefix un- as an example, they
examined the role of cryptotypes in determining overgeneralization patterns,
competition principles, and plasticity of learning. In three simulations, they
showed that structured semantic representations can emerge from connectionist
learning: the network formed internal representations of semantic categories that
correspond to Whorf’s cryptotypes, on the basis of learning limited semantic
features of verbs and morphological classes. More important, the network
produced overgeneralization errors similar to those reported by Bowerman (1982),
Clark, Carpenter, and Deutsch (1995), and those observed in the CHILDES database,
indicating that emergent semantic structures underlie patterns of productivity in
child language.

In this paper, I take a more in-depth look at the issue of the acquisition of
semantic structure along with the acquisition of morphological systems. I will
focus on the second set of models discussed above, the connectionist approach to
language acquisition, summarizing results from our studies. Our results indicate
how semantic structures can emerge from the learning of probabilistic associations
that hold between lexical items and morphological markers. Moreover,
understanding gained from connectionist semantic acquisition directly helps us to
identify psycholinguistic and computational mechanisms of generalization and
overgeneralization in language acquisition.
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2. Cryptotype as an Emergent Category and as a Trigger
for Overgeneralization

Whorf’s cryptotype

In one of the classic papers of early cognitive linguistics, Whorf (1956) presented
the following puzzle. In English, the reversive prefix un- can be used productively
with many verbs to indicate the reversal of an action, for example, as in uncoil,
uncover, undress, unfasten, unfold, unlock, untie, or untangle (the meaning of
reversal can also be expressed by other prefixes such as dis- or de-). However,
many seemingly parallel forms are not allowed, such as *unbury, *unfill, *ungrip,
*unhang, *unpress, *unspill, *unsqueeze, or *untighten. Why is un- prefixation
allowed with some verbs but not others? None of the standard categories of Latin
grammar can be used as a basis for a rule to tell us when we can use un- and when
we cannot.

Whorf’s puzzle was deeper than this simple discrepancy. He reminded us
that un- is a productive device in English morphology, and that despite the
difficulties that linguists have in characterizing its use, native speakers do have an
intuitive feel for which verbs can be prefixed with un- and which cannot. He
presented the following thought experiment: if a new verb, flimmick is coined to
mean “to tie a tin can to something”, then native speakers are willing to accept the
sentence, “He unflimmicked the dog” as expressing the reversal of the
“flimmicking” action; if flimmick means “to take apart”, then they will not accept
“He unflimmicked the puzzle” as describing the act of putting a puzzle back
together. The constrained productivity of un- prompted Whorf that there was
some underlying or covert semantic category, a cryptotype, that governs the
productive use of un-. According to Whorf, cryptotypes only make their presence
known by the restrictions they place on the possible combinations of overt forms.
When the overt prefix un- is combined with the overt verb tie, there is a covert
cryptotype that licenses the combination untie. This same cryptotype also blocks
a combination such as *unmove. To Whorf, the deep puzzle was that while the
use of the prefix un- is productive, the cryptotype that governs its productivity is
unclear: “we have no single word in the language which can give us a proper clue to
its meaning or into which we can compress this meaning; hence the meaning is
subtle, intangible, as is typical of cryptotypic meanings.”

Although cryptotype seemed puzzling, Whorf did propose that there was “a
covering, enclosing, and surface-attaching meaning” (Whorf, 1956:71) that could be
the basis of the cryptotype for un-. Whorf was correct in noting that verbs that
take un- usually have one or more of the covering, enclosing, or surface-attaching
meaning. But it is not clear whether we should view this cryptotype as a single
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unit, three separate meanings, or a cluster of related meanings. Nor is it clear
whether these notions of attachment and covering fully exhaust the
subcomponents of the cryptotype. Subsequent analyses have suggested certain
additional components not initially considered by Whorf. For example, Marchand
(1969) and Clark et al. (1995) argue that verbs that license un- all involve a change
of state, usually expressing a transitive action. This transitive action typically
reaches a terminal point in time (encoded by a telic verb; Comrie, 1976), or some
end state or result (an accomplishment verb; Vendler, 1967). When the meaning of
a verb does not involve a change of state or does not indicate telicity or
accomplishment, the verb cannot take un-, thus the ill-formedness of verbs like
*unswim, *unplay, and *unsnore.

Cryptotype and morphological productivity in child language

Whorf’s discussion shows clearly how cryptotype is important to the use of un-
in the adult language. Bowerman was the first to point out that the notion of
cryptotype might also play an important role in children’s acquisition of un-.

According to Bowerman (1982, 1983, 1988), children’s acquisition of un-
tends to follow a U-shaped pattern, a pattern that children display in other areas
of morphological acquisition as well, such as the acquisition of the English past
tense (Brown 1973; Kuczaj 1977). Children initially produce un- verbs in
appropriate contexts, treating un- and its base verb as an unanalyzed whole. This
initial stage of rote control is analogous to the child’s saying went without realizing
that it is the past-tense form of go. Productivity of un- comes at the next stage,
when children realize that un- is independent of the verb to indicate the reversal of
an action.

The next stage in the acquisition of un- begins at around age 3. At this stage,
children start to produce overgeneralizations in spontaneous speech such as
*unarrange, *unbreak, *unblow, *unbury, *unget, *unhang, *unhate, *unopen,
*unpress, *unspill, *unsqueeze, or *untake (Bowerman, 1982). These
overgeneralizations have also been observed in Clark et al. (1995) in both
experimental and naturalistic data with children from ages 3 to 5, for example,
*unbend, *unbury, *uncrush, *ungrow, *unstick, and *unsqueeze. Similar
examples can also be found in the CHILDES database, such as *unblow, *unbuild,
*uncatch, *uncuff, *unhand, *unlight, *unpull, *unstick, and *unzipper (see Li &
MacWhinney, 1996, for a more complete list of examples of overgeneralization
errors). During this period, children also make certain ‘overmarking’ errors. For
example, the child might say *unopen and really only means to say open, or
unloosen to mean loosen. In such cases, the base forms open and loosen have a
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reversive meaning that triggers the attachment of the prefix, even when the action
of the base meaning is not actually being reversed. These errors are analogous to
redundant past-tense marking as in *camed and redundant plural marking as in
*feets (Brown, 1973). As children grow older, overgeneralization or overmarking
errors gradually disappear.

A traditional explanation of the U-shaped pattern in children’s morphological
acquisition goes like this: initially they rely on rote learning, then they develop a
general rule and apply it productively (and overgeneralize it), and finally they
recover from productive errors (this is much like what has been argued for the
acquisition of the English past tense). For productivity to take place at the second
stage, Bowerman correctly pointed out that cryptotype plays an important role.
But how could the child extract the cryptotype and use it as a basis for
morphological generalization or recovery, when the cryptotype is intangible even
to linguists like Whorf? (see Whorf’s comments on the subtle and intangible nature
of the cryptotype as discussed  earlier).

A connectionist account of cryptotype and its acquisition

A connectionist perspective provides us with a natural way of capturing Whorf’s
insights of cryptotype as well as its acquisition in a formal mechanism. In our
view, there can be several ‘mini-cryptotypes’ that work together as interactive
‘gangs’ (McClelland and Rumelhart, 1981). For example, “enclosing” verbs, such
as coil, curl, fold, reel, roll, screw, twist, and wind, all seem to share a meaning of
circular movement. Similarly, “attaching” verbs, such as clasp, fasten, hook, link,
plug, and tie, all involve hand movement. Other verbs such as bind, buckle, fasten,
latch, leash, lock, strap, tie, and zip form a mini-cryptotype that share a “binding”
or “locking” meaning. Still another cluster of verbs such as cover, dress, mask,
pack, veil, and wrap forms the “covering” mini-cryptotype. These mini-
cryptotypes or mini-gangs interact collaboratively to support the formation of the
larger cryptotype that licenses the use of un-, in terms of summed activation, as
illustrated as in Figure 1.

The mini-gangs collaborate rather than compete because their members are
closely related by the overlap of semantic features. For example, the verb screw in
unscrew may be viewed as having both a meaning of circular movement and a
meaning of binding or locking; zip in unzip may be viewed as sharing both the
“binding/locking” meaning and the “covering” meaning, and both screw and zip
involve hand movements. Moreover, a feature may also vary in the strength with
which it is represented in different verbs. For example, circular movement is an
essential part of the meaning of the verb screw, but less so for wrap (one can wrap
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a small ball with a soft tissue paper without turning around either the object or the
wrapping paper). These properties of feature overlap and degraded featural
composition lend themselves naturally to properties of connectionist models.
Distributed patterns, weighted connections, nonlinear learning as embodied in
connectionist networks seem to be ideal for handling the elusiveness and gradience
of these semantic structures.

                                               

covering
“dress, mask,wrap”

attaching
“hook, link, tie”

circular
movement
“coil, curl, roll”

enclosing
“fold, reel, wind”

change of
state “scramble,
tangle, twist”

change of
location
“load, pack, plug”

binding
“buckle, fasten,
strap”

UN-
Cryptotype

Figure 1. Multiple features support the formation of the un- cryptotype. Arrows
represent the feature-to-category connections; the weights or strengths of
connections are omitted. Dots in the center of the circle represent words that fit
the core of the category, while dots near the border of the circle represent
borderline cases.

In the last few years, our laboratory has carried out connectionist simulations
to study the issue of semantic structure and overgeneralization, using the
acquisition of un- as an example. In the following sections, I will discuss two
major models in this endeavor. The first model uses a standard feed-forward
network to simulate the acquisition of cryptotypes and prefixes. The second
model uses a self-organizing neural network, which has also been recently applied
to the acquisition of semantic and grammatical structures in children and in
bilingualism. Readers who are interested in the technical details of these models
should consult Li and MacWhinney (1996), Li and Farkas (2002), Li (2003), and
Li, Farkas, and MacWhinney (2004).

3. A feed-forward network that learns to map semantic features of verbs to
prefixes
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Method

Connectionist networks that use the back-propagation algorithm (henceforth
‘backpropagation networks’) are perhaps the most popular class of networks and
are most widely applied in studies dealing with language. A standard back-
propagation network consists of three layers of processing units (Rumelhart,
Hinton, & Williams, 1986). In this type of network, information is first encoded at
the input layer, then it funnels through the hidden layer, where internal
representation is formed, and finally results are produced at the output layer
(hence the nickname of ‘feed-forward networks’). Each layer consists of different
units, representing different states/processes of information processing (from
input to output). Learning in this case is a function of adjusting the weights of the
connections between units across the layers. The adjustment is done through the
back-propagation algorithm, according to which the network discovers a
discrepancy between its actual output and the desired output, and then an error
signal is propagated back through the system, so that weights are adjusted in a
way such that the next time the same input will lead to an output that matches
more closely to the desired output (for technical details of the algorithm, see
Hinton, Rumelhart, & McClelland, 1986).

In our simulation, we used 160 verbs as input to our network. They consisted
of 49 verbs that can take the prefix un-, 19 verbs that can take the competing
prefix dis- (see Li & MacWhinney, 1996, for the rationale of including dis- verbs,
and the competition between un- and dis- in both child and adult languages), and
92 randomly selected verbs that can take neither prefix (henceforth ‘zero verbs’).
Each verb was represented by a semantic pattern (a vector) that consists of 20
semantic features. These features were selected in an attempt to capture basic
linguistic and functional properties inherent in the semantic range of these verbs.
In order to objectively determine the values of each semantic feature, we presented
15 native English speakers with the 160 verbs along with the 20 semantic features,
and asked them to judge the semantic relevance of each feature to each verb. A
feature-by-verb relevance matrix was derived for each subject, and the final input
vectors were derived by averaging the matrices from all subjects. A hierarchical
clustering analysis on these vectors attests to the validity of our method, as
distance metrics in this analysis reflected the similarities and differences between
words.

The task of the network was to take the semantic vectors of English verbs as
input, and map them onto different prefixation patterns in the output: un-, dis-,
and zero. Figure 2 shows the network architecture and examples.
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UN- DIS-  

Internal 
Representation

.7 .6 .5 .6 .1 .2 .1 .9 .3 .5 .2 .0 .3 .3 .6 .7 .0 .1 .0 .0  connect

.9 .5 .6 .7 .0 .3 .1 .9 .4 .7 .3 .0 .5 .3 .4 .8 .1 .2 .0 .1     link
.6 .0 .0 .0 .3 .5 .5 .1 .3 .1 .1 .6 .0 .1 .1 .0 .1 .1 .0 .0    turn

......

......
......

  (160 verbs) 

Figure 2. The feed-forward network that learns to map semantic features of verbs to
prefixation patterns (un-, dis-, Ø).
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Results and Discussion

Connectionist networks are dynamic systems that explore the regularities in the
input-output mapping processes through the adjustment of connection weights (to
and from the hidden units) and the activation of the hidden units. To analyze how
our network developed internal representations, we used the hierarchical cluster
analysis to probe into the activation of the hidden units at various points in time
during the network’s learning (see Elman, 1990, for an application of this method).
Figure 3 (in Appendix) presents such an analysis at three time points, the early
(3a), intermediate (3b), and later stages of learning (3c), respectively. Focusing
here on the verbs that share the enclosing-rotating meaning (most of which can be
prefixed with un-), we can see how the network developed structured semantic
representations. These cluster trees indicate that early on with little learning, there
was not much meaningful structure in the data, and thus, the enclosing-rotating
verbs were scattered all over the cluster tree. Gradually as learning progressed,
these verbs started to form smaller groups at several levels. Finally when learning
reached a stable situation, they were all grouped under one cluster.

These snapshots provide a picture of the developmental trajectories in the
network’s integration of semantic structures during the meaning-form mapping
process. They illustrate how a mini-cryptotype, such as the enclosing-rotating
category, which supports the use of un-, can emerge from learning the mapping of
verb semantics to prefixation.

In the studies reported by Li & MacWhinney (1996), we used an incremental
learning procedure, in which the network took in the input gradually, verb by verb.
Learning with this procedure also lent us insights into the formation of cryptotype
in the network. Figure 4 shows a cluster tree of the network’s hidden-unit
representation when the network learned 50 verbs. In this graph, we can observe
two general clusters: one for the un- verbs, and the other for the zero verbs – verbs
that cannot be prefixed with un- or dis-. Our interpretation of these clusters is that
the network acquired a distinct representation for the un- verbs by identifying the
mini-cryptotypes inherent in these verbs. For example, most of the verbs in the
un- cluster share the cryptotypic meaning of binding or locking: bind, chain,
fasten, hitch, hook, latch, etc. However, not all mini-cryptotypes were identified at
this time, and they emerged at different stages as discussed above. Figure 4 also
!shows, for example, that the network had not yet developed a clear representation
for the enclosing verbs: the verbs ravel and coil were correctly categorized into the
un- cluster, but the verb roll was incorrectly treated as a zero verb.
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 reach  ZERO
 allow  ZERO
 charge  DIS

 use  ZERO
 show  ZERO
 look  ZERO

 work  ZERO
 go  ZERO

 start  ZERO
 like  ZERO

 hear  ZERO
 talk  ZERO
 see  ZERO
 say  ZERO
 tell  ZERO
 ask  ZERO

 give  ZERO
 run  ZERO
 walk  ZERO
 take  ZERO

 get  ZERO
 come  ZERO

 help  ZERO
 wait  ZERO

 believe  ZERO
 call  ZERO

 keep  ZERO
 roll  UN

 stop  ZERO
 turn  ZERO

 learn  ZERO
 make  ZERO

 put  ZERO
 chain  UN

 braid  UN
 latch  UN
 fasten  UN
 bind  UN

 hitch  UN
 cork  UN
 plug  UN

 coil  UN
 lace  UN

 mount  DIS
 hook  UN
 wind  UN

 hold    ZERO
 ravel  UN

 connect  DIS
 arrange  DIS

Figure 4. A hierarchical cluster analysis of the network’s hidden-unit representations
after the network has learned 50 verbs.

Note that our network received no discrete label of the semantic category
associated with un-, nor was there a single categorical feature that tells which verb
should take which prefix (hence Whorf’s problem). All that the network received
was semantic featural! information distributed over different input patterns. Over
time, however, the network was able to identify the regularities that hold between
distributed semantic patterns and patterns of prefixation, and developed a
structured representation in the mapping process. The structured representations
in the network thus emerged as a function of its learning of the association
between form and meaning, not as a property that was given ad hoc to the
network by the modeler.

The emerging representations also clearly capture Whorf’s notion of
cryptotype. The meaning of a cryptotype constitutes a complex semantic
network, in which verbs differ from one another with respect to (a) how many
features each verb contains, (b) how strongly each feature is represented in the
verb, and (c) how strongly features overlap with one another within a verb (all true
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with the input to our network). It is these complex relationships that give rise to
the notion of cryptotypes.

The emergence of cryptotype representations in our network can be viewed
as a replacement for the traditional analytic frameworks of categories and rules
(Lakoff, 1987; MacWhinney, 1989). In this perspective, children’s learning of un-
is not simply the learning of a symbolic rule for the use of the prefix with a class
of verbs (given that it is not even clear what the rule is), but the accumulation of
the connection strength that holds between a particular prefix and a set of semantic
features distributed across verbs. The learner groups together those verbs that
share the largest number of features and take the same prefix. Over time, the verbs
gradually form clustered patterns, with respect to both meaning and prefixation
pattern. This learning process can best be described as a statistical procedure in
which the child implicitly tallies and registers the frequencies of co-occurrence of
semantic features, lexical items, and morphological devices.

Bowerman (1982, 1983) suggested that there are two possible roles for
cryptotypes to influence the learning of un-. (a) “Recovery via cryptotype”:
cryptotypes help the child to overcome overgeneralizations made at an earlier
stage, if these overgeneralizations involve verbs that fall outside the cryptotype,
such as *uncome, *unhate, and *untake (Bowerman, 1982); (b) “Generalization
via cryptotype”: cryptotypes trigger productivity and leads to
overgeneralizations. This occurs because, once children have identified the
cryptotype, they will overgeneralize un- to all verbs that fit the cryptotype,
irrespective of whether the adult language actually allows un- with these verbs.
Our simulation results provide support for the second role of cryptotype in
inducing overgeneralizations that fall within the realm of the cryptotype. Figure 4
showed how the network included hold and mount in the un- category. These
verbs were included apparently because of their semantic similarity with members
of the cryptotype, most of which can take un- (e.g., bind, chain, fasten, hitch,
hook, latch). Examining the output patterns of hold and mount in the network, we
found that un- was overgeneralized on these verbs. Similar overgeneralization
errors produced by the network included *unbury, *uncapture, *unfill, *unfreeze,
*ungrip, *unhold, *unloosen, *unmelt, *unpeel, *unplant, *unpress, *unsplit,
*unsqueeze, *unstrip, *untack, and *untighten, most of which fit the cryptotype
meaning. Our network produced few simulated errors that were flagrant violations
of the cryptotype meaning, such as forms like *uncome reported by Bowerman
(1982), thus our results provide no direct evidence for the first role of cryptotype
as hypothesized by Bowerman. In our simulations, overgeneralizations occurred
typically after the network had developed structured cryptotype representation,
indicating that cryptotype served as a trigger for morphological overgeneralization.
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These results match up well with available empirical data. For example, one
child in Bowerman’s study produced errors such as *uncapture, *unpeel,
*unpress, *unsplit, *unsqueeze, and *untighten, similar to those in our network.
The overgeneralizations that the child produced all fell within the cryptotype, and
her acquisition of un- as a reversive prefix went hand in hand with her discovery of
the cryptotype meanings of the verbs. In Clark et al.’s (1995) naturalistic data, the
child’s innovative uses of un- also respected the cryptotype from the beginning.
Clark et al. noted that the child’s use of un- matched the semantic characteristics
of the cryptotype even when the conventional meanings of the verb in the adult
language did not: *unbuild was used to describe the action of detaching lego-
blocks, *undisappear was used to describe the releasing of the child’s thumbs
from inside his fists.4 Thus, once the learner (child and network alike) formed a
structured representation that corresponds to the cryptotype for un-, the
representation guides the learner’s behavior in productive morphological use.

In subsequent simulations, our network also displayed a limited amount of
recovery from overgeneralization errors. Typically, recovery was best when the
network had developed only partial or unstable semantic structures at relatively
early stages of learning, and it became increasingly difficult when a fixed structure
had emerged at later stages of learning! (Li & MacWhinney, 1996). This is because
the back-propagation learning algorithm proceeds in such a way that early on, the
network’s weight configurations are not fully committed and more flexible to
change, but later on as the network learns more and more words, it settles on a
more stable weight space that makes adjustment difficult if not impossible (see
Elman, 1993: 91-93 for a detailed discussion of how the learning algorithm
determines weight adjustment over time). This situation does not seem to match
with what we know about child language: most children eventually recover from all
overgeneralization errors, no matter how late. Even tough plasticity might be
particularly characteristic of early learning (Spitzer, 1999), older children and
adults are still able to change, adapt, and recover from errors, unlike !the network
studied here (Bownds, 1999). This mismatch, along with other considerations
discussed below, prompted us to study another type of connectionist model, the
self-organizing neural network, to account for lexical acquisition.

4. A self-organizing network that learns to map semantic features to
prefixes

Although most previous connectionist model of language acquisition have relied on
the use of feed-forward networks with back-propagation, researchers have started
to see their limitations. In addition to its limited ability to recover from
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overgeneralizations, there were two other major limitations to the network that we
used. First, our network, like most previous models, received semantic input
features selected on the basis of linguistic analyses on the part of the modeler.
Input representation in this way is subject to the criticism that the network
worked (e.g., displayed cryptotype representation) precisely because of the use of
certain semantic features (cf. Lachter & Bever, 1988). To overcome potential
limitations associated with this problem, in the new simulations we used semantic
representations that are based on analyses of global lexical co-occurrences from a
large text corpus (see previous discussion of HAL, and Method below). Second,
back-propagation relies on a gradient-descent weight adjustment process to reduce
the error between desired and actual outputs, but this type of adjustment seems
unrealistic for child language learning. According to the well-known “no negative
evidence” argument (Baker, 1979; Bowerman, 1988; Pinker, 1989), children do not
receive constant feedback about what is incorrect in their speech, or receive the
kind of error corrections on a word-by-word basis as provided to a back-
propagation network. Thus, back-propagation networks would seem to be poor
candidates as models of language acquisition on grounds of their psychological or
biological plausibility. Considerations of these problems lead us to self-organizing
neural networks. Self-organizing networks are biologically more plausible because
one could conceive of the human cerebral cortex as essentially a self-organizing
map (or multiple maps) that compresses information on a two-dimensional space
(Spitzer, 1999). They are computationally more relevant because one could argue
that child language acquisition in the natural setting (especially organization and
reorganization of the lexicon) is largely a self-organizing process that proceeds
without explicit teaching (MacWhinney, 1998, 2001).

Method

In contrast to standard feed-forward networks, self-organizing networks use
unsupervised learning that requires no presence of a supervisor or an explicit
teacher; learning is achieved entirely by the system’s self-organization in response
to the input (Kohonen, 1982, 1989, 1995). Self-organization in these networks
typically occurs in a two-dimensional map (self-organizing map), where each unit
is a location on the map that can uniquely represent one or several input patterns.
At the beginning of learning, an input pattern randomly activates one of the many
units on the map. Once a unit becomes active in response to a given input, the
weights to the unit and its neighboring units are adjusted so that they become more
similar to the input and will therefore respond to the same or similar inputs more
strongly the next time. In this way, the network gradually develops concentrated



(8: 17)

areas of units on the map (like the activity “bubbles”) that respond to particular
inputs. This process continues until all the inputs can elicit specific response
patterns in the network. As a result of this self-organizing process, the statistical
structures implicit in the multi-dimensional space of the input are represented in
the two-dimensional space of the map.

Here we used the hierarchical feature map model of Miikkulainen (1993,
1997) in our simulations, because it combines multiple self-organizing maps in a
single network. In this model, there is a semantic map that processes semantic
information of the words, and there is a phonological map that processes
phonological information of words (for more details of the application of the
model, see Li, 1999, 2003). The two maps are connected via associative links
trained by Hebbian learning, a well-established biologically plausible learning
principle, according to which the associative strength between two units (semantic
and phonological) is increased if the units are both active at the same time (Hebb,
1949).

The same set of verbs described in §3 was used as the input, but they were
represented differently from the way they were represented in the previous
simulations. The semantics of these words were encoded as patterns of global
lexical co-occurrence constraints (Burgess & Lund, 1997; see §1), rather than
patterns of semantic features selected on the basis of our own linguistic analyses.
Each verb was represented as a pattern of 100 units, and the values of these units
reflected the degree of a lexical co-occurrence constraint (on a continuous scale
from 0 to 1). We also derived a phonological representation for each verb and the
prefixes un- and dis-, according to MacWhinney and Leinbach (1991). In this
representation scheme, each verb was encoded by 168 units in a syllabic template
to represent the combinatorial constraints of phonology (see also Li &
MacWhinney, 2002, for details).

Upon training of the network, a phonological representation of the verb was
presented to the network, and simultaneously, the semantic representation of the
same verb was also presented to the network. By way of self-organization, the
network formed an activity on the phonological map in response to the
phonological input, and an activity on the semantic map in response to the
semantic input. Depending on whether the verb is prefixable with un- or dis-, the
phonological representation of un- or dis- may also be co-activated with the
phonological and the semantic representations of the verb stem. At the same time,
through Hebbian learning the network formed associations between the two maps
for all the active units that responded to the input. The network’s task was to
create new representations in the corresponding maps for all the input words and
to be able to map the semantic properties of a verb to its phonological shape and
its morphological pattern.
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Results and Discussion

In our network, the self-organizing process extracted and compressed the high-
dimensional information from the HAL semantic vectors and expressed the semantic
similarities on the two-dimensional space as concentrated patterns of activity.
Figure 5 presents a snapshot of the network’s self-organization of 120 verbs after
the network was trained for 600 epochs.

Figure 5. A self-organizing map model that shows the organization of 120 verbs after the
network was trained on these verbs for 600 epochs. The upper panel is the lexical
phonological map (indicated by capital letters), and the lower panel the semantic map
(indicated by lower-case letters). Words longer than four letters are truncated.

An examination of the semantic map shows that the network has clearly
developed forms of representation that correspond to cryptotype categories.
Earlier we suggested that a connectionist model provides a formal mechanism to
capture Whorf’s notion of cryptotype, in that there can be several mini-
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cryptotypes that work collaboratively as interactive gangs to support the
formation of the larger cryptotype. The idea of ‘mini-cryptotype’ is reflected
most clearly in the emerging structure of the self-organizing map. Our network,
without the use of ad hoc semantic features, formed clear mini-cryptotypes by
mapping similar words onto nearby regions of the map. For example, towards the
lower right-hand corner, verbs like lock, clasp, latch, lease, and button are mapped
to the same region of the map, and these verbs all share the “binding/locking”
meaning. A similar mini-cryptotype also occurs towards the lower left-hand
corner, including verbs like snap, mantle, tangle, ravel, twist, tie, and bolt. Still a
third mini-cryptotype can be found in the upper left-hand corner, including hear,
say, speak, see, and tell, verbs of perceptions and audition. Finally, one can
observe that embark, engage, integrate, assemble, and unite are being mapped
toward the upper right-hand corner of the map, which all seem to share the
“connecting” or “putting-together” meaning (interestingly, these are the verbs that
can take the prefix dis-). Of course, the network’s representation at this point is
still incomplete, as self-organization is moving from diffuse to more focused
patterns of activity; for example, the verb show, which shares similarity with none
of the above mini-cryptotypes, is grouped with the binding/locking verbs. What is
crucial, however, is that these mini-cryptotypes form the semantic basis for the
larger cryptotype of un- verbs. As shown in Figure 5, the network has mapped
most verbs in the cryptotype to the bottom layer of the semantic map, and these
are the verbs that can take the prefix un-.

Moreover, our network was not only able to capture the elusive cryptotype
by way of self-organization, but also able to generalize on the basis of its
representation of the cryptotype. During testing of the network’s productive
ability, overgeneralization occurred with 50% of the testing words. For example,
the network produced overgeneralization errors that match up with empirical data
and our previous simulation results (see §3), including *unbreak, *uncapture,
*unconnect, *unfreeze, *ungrip, *unpeel, *unplant, *unpress, *unspill, *unstick,
*untighten, etc. These overgeneralizations were based both on the network’s
representation of the meaning of verbs and on the associative connections that the
network formed through Hebbian learning in the semantics-phonology mapping
process. Again, like in our previous simulations, most of these overgeneralizations
involve verbs that fall within the un- cryptotype. Thus, the results here are again
consistent with the “generalization via cryptotype” hypothesis, that is, the
representation of cryptotype leads to overly general uses of un- (see also
discussion of the clench example below) rather than the narrowing down of its
uses (as predicted by the “recovery via cryptotype” hypothesis).

One of the advantages of the self-organizing model is its ability to simulate
comprehension and production through associative connections. The associative
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connections formed via Hebbian learning provide the basis for the production of
overgeneralization errors. For example, the semantic properties of tighten and
clench are similar and they were mapped onto nearby regions of the semantic map.
During learning, the semantics of clench and unclench were co-activated, and the
phonology of clench, unclench, and un- were also co-activated. When the
semantics and the phonology of these items were associated through Hebbian
learning, the network linked the semantics of tighten with the prefix un- because of
clench, even though the network learned only the association for un-clench and not
un-tighten (when tighten was withheld from training at an earlier stage). This
associative process of correlating semantic features, lexical forms, and
morphological devices simulates the process of learning and generalization in
children’s productive speech, and shows that overgeneralizations can naturally
result from the semantic structure in the lexical representations (which in turn is a
result of self-organization), and from the associative learning of semantics and
phonology.

In §3 we discussed the failure of a feed-forward network in recovering from
overgeneralization errors. We attributed that failure to the gradient-descent error-
adjustment process used in the back-propagation algorithm. In self-organizing
networks, recovery is a function of the adjustment of associative connections via
Hebbian learning, proportional to how strongly the units in the associated maps
(phonological and semantic maps in this case) are co-activated. When a given
phonological unit and a given semantic unit have fewer chances to become co-
activated, the strengths of their associative links are correspondingly decreased.
We could compare this to a situation in which the learner receives no auditory
support about the specific meaning-form co-occurrences that he or she expects in
the production (MacWhinney, 1997). Given that the learning system is input-
sensitive, over time, the meaning-to-form connections will weaken and therefore
less likely to occur in production.

Indeed, our network displayed significant ability to recover from
generalization errors. When tested for recovery with additional new learning (500
epochs), the network recovered from the majority of the overgeneralizations (75%
recovery). Recovery in this case is a process of restructuring of the mapping
between phonological, semantic, and morphological patterns, and the restructuring
is based on the network’s ability to reconfigure the associative links through
Hebbian learning, in particular, the ability to form new associations between
prefixes and verbs and the ability to eliminate old associations that were the basis
of erroneous generalizations. For example, un- was overgeneralized to tighten
because of clench earlier on; when tested for recovery, only un- and clench
continue to be co-activated. Hebbian learning determines that the associative
connection between un- and clench remains strong, but that between un- and
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tighten weakens and gradually decreases to zero. This simulates the situation in
which the child receives no support in the input about the relationship between
un- and clench. Of course, in the real learning situation, the strength of the
connection between un- and tighten may also be reduced by a competing form such
as loosen that functions to express the meaning of *untighten, whereby principles
of contrast or competition help to eliminate the erroneous combination (e.g., Clark,
1987; MacWhinney, 1987).

Note that the restructuring of associative connections often goes hand-in-hand
with the reorganization of the corresponding maps. For example, as the associative
strengths of clench and tighten to un- varied, the verbs’ representations also
became more distinct. This simulated result is consistent with Pinker’s (1989)
criteria proposal that children recover from generalizations by recognizing fine and
subtle semantic and phonological properties of verbs. In the few cases in which
our network did not recover from overgeneralizations, the network was unable to
make the fine semantic distinctions between verbs (see Li, 1999, for details).

5. General Discussion and Conclusions

In this chapter I attempt to provide a computational perspective on a
developmental issue. I started with two types of approaches to the problem of the
acquisition of word meanings. I then gave a connectionist account of the
acquisition of semantic structures and morphological systems, presenting modeling
results from both a feed-forward network and a self-organizing network. I have
chosen to examine a classical puzzle that Whorf presented some 40 years ago, the
issue of cryptotype in connection with the use and acquisition of the English
reversive prefix un-. This problem differs from many of the currently debated
topics, for example, the acquisition of the English past-tense where the patterns of
use largely depend on phonological constraints and where the focus of debate has
been on the competition between regular rules and exceptions. The un- problem
examined here is essentially semantic, and there seems to be no regular rule that
governs the use of this prefix (hence “intangible”, as Whorf named it). Our
connectionist models provide some insights into the understanding of Whorf’s
puzzle, in particular, the understanding of the emergence of complex semantic
structures in language acquisition and the role of a structured semantic
representation in morphological productivity (e.g., overgeneralization). The
simulation results suggest a dynamic learning picture in which the network extracts
shared semantic information, develops representations of the cryptotype, and
overgeneralizes morphological devices. Such results allow us to understand the
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processes underlying important phenomena such as the U-shaped behavior in
language acquisition.

Current debates in cognitive science and psycholinguistics revolve around the
issue of the nature of linguistic representation. Symbolic theories construe
linguistic representations in terms of rules in physical symbol systems. A child is
said to have a general rule in her mental representation, “adding -ed to make the
past tense”, at some stage of language acquisition. This kind of description seems
intuitively clear, and the rule offers a powerful mechanism for productivity.
Connectionist models provide alternative explanations to this perspective,
explanations that place emphasis on the statistical learning processes that lead to
rule-like behaviors. In this chapter I have demonstrated that the acquisition of
linguistic patterns, such as the prefixation of un-, can be construed as emerging out
of basic processing capacities, that is, the processing of the intricate relationships
among phonological and semantic features, lexical items, and morphological devices
in a natural language. This perspective seems to be especially suited for the
problem that we have at hand, the cryptotype problem that was once thought
“subtle” and “intangible” in a symbolic framework. In our view, the reason for the
intangibility of the cryptotype is probably that the semantic features that unite
different members of a cryptotype are represented in a complex distributed
fashion (e.g., feature overlaps across categories), such that they are not easily
subject to traditional symbolic analysis, but are accessible to native intuition
(according to Whorf). Native intuitions are clearly implicit representations of the
complex semantic relationships among verbs and morphological markers, and
connectionist networks provide mechanisms to capture these intuitions through
weighted connections, distributed representations, and nonlinear dynamics.

Virtually the same story could be told about many other linguistic domains in
which the problem is primarily semantically motivated. For example, the use of
classifiers is one of the hardest problems for second language learners of Chinese,
as well as a major challenge to linguistic theories (cf. Chao, 1968; Lakoff, 1987, Li
& Thompson, 1981). Each noun in Chinese has to be preceded by a classifier that
categorizes the object of the noun in terms of its shape, orientation, dimension,
texture, countability, and animacy. The appropriate uses of most classifiers by
native speakers are mostly automatic, yet it is difficult for linguists to come up
with clear descriptions of symbolic rules that govern their uses. We can probably
assume that native speakers have acquired a representation by a connectionist
cryptotype-like mechanism in which multiple weighted semantic features
connected in a network jointly support the use of classifiers. We have recently
successfully applied this type of mechanisms and explanations to the study of the
acquisition of inherent verb aspect and tense-aspect morphology in Chinese,
English, and Japanese (see Li & Bowerman, 1998; Li, 2000, 2003; Li & Shirai,
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2000). Following this line of research further, we have developed the DevLex
model, a self-organizing neural network model for the development of the lexicon.
We have applied DevLex to the modeling of monolingual and bilingual lexicon
acquisition, simulating the formation of categorical representations, the confusion
of competing lexical items in early speech, and the spurt of vocabulary in early
word production (see details in Farkas and Li, 2002; Hernandez, Li, and
MacWhinney, 2005; Li and Farkas, 2002; Li, Farkas, and MacWhinney, 2004).

In sum, we can start to understand some of the most difficult problems in
language acquisition, for example, the acquisition of semantic structures, when we
take a computational approach of the type discussed here. Structured semantic
representations can emerge from statistical computations of the various
constraints among lexical items, semantic features, and morphological markers in a
high-dimensional space of language use, as they continuously evolve and develop.
The evolution and development of semantic representations as acquired by
children may be due to simple probabilistic procedures of the sort embodied in
connectionist networks or statistical learning mechanisms for form-to-form and
form-to-meaning mappings.
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1 Readers who are interested in details of connectionist theory and methods should read
Rumelhart, McClelland, and the PDP Research Group (1986). For non-technical
introduction of connectionism, read Bechtel and Abrahamsen (1991) and Spitzer (1999). For
technical discussions, read (progressively more technical) Dayhoff (1990), Fausett (1994),
Anderson (1995), and Hertz, Krogh, and Palmer (1991). For its relevance to developmental
theories, read Elman et al. (1996) and Klair and MacWhinney (1998). For a comprehensive
review of all major fields in neural networks, consult Arbib (1995).

2 For some readers, these two sets of models may simply be viewed as the same kind of
models, given that they both rely on statistical patterns and are in many ways closely
related.


